
Oracle® Banking Enterprise Originations
Host Extensibility Guide
Release 2.10.0.0.0
F29510-01

April 2020

Oracle Banking Enterprise OriginationsHost ExtensibilityGuide, Release 2.10.0.0.0

F29510-01

Copyright © 2017, 2020, Oracle and/or its affiliates.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and
the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on use
and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license
agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,
distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed or activated on delivered hardware, and modifications of such programs) and
Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users
are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded,
installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license
contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud services are
defined by the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is
not developed or intended for use in any inherently dangerous applications, including applications that may create
a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be
responsible to take all appropriate failsafe, backup, redundancy, and other measures to ensure its safe use.
Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or
hardware in dangerous applications.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in
an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services,
except as set forth in an applicable agreement between you and Oracle.

Contents

Preface 26

Audience 26

Documentation Accessibility 26

Related Documents 26

Conventions 26

1 About This Guide 29

2 Objective and Scope 31

2.1 Overview 31

2.2 Objective and Scope 31

2.2.1 Extensibility Objective 31

2.3 Complementary Artefacts 31

2.4 Out of Scope 32

3 Overview of Use Cases 33

3.1 Extensibility Use Cases 33

3.1.1 Extending Service Execution 33

3.1.2 OBP Application Adapters 34

3.1.3 Extending Business Policy 34

3.1.4 User Defined Fields 35

3.1.5 Batch Framework Extension 35

3.1.6 Uploaded File Processing 36

3.1.7 Alert Extension 37

3.1.8 Create New Reports Using Oracle Analytics Publisher 38

3.1.9 Security Customization 39

3.1.10 Facts and Business Rules 41

3

3.1.11 Composite Application Service 41

3.1.12 ID Generation 42

3.1.13 OCH Integration 42

3.1.14 Documaker Integration 43

4 Extending Service Executions 45

4.1 Service Extension – Extending the "app" Layer 45

4.1.1 Application Service Extension Interface 46

4.1.2 Default Application Service Extension 47

4.1.3 Application Service Extension Executor 48

4.1.4 Extension Configuration 50

4.1.5 Application Service Extension Using Groovy 51

4.2 Extended Application Service Extension – Extending the "appx" Layer 52

4.2.1 Extended Application Service Extension Interface 54

4.2.2 Default Implementation of Appx Extension 55

4.2.3 Configuration 56

4.2.4 Extended Application Service Extension Executor 57

4.2.5 Application Service "appx" Extension using Groovy 59

4.3 End-to-End Example of an Extension 61

4.4 Support for Middleware Specific Tasks and Application service 65

4.4.1 Pre and Post Middleware Specific Transaction Tasks Overview 65

4.4.2 Sample Configuration 66

4.4.3 Custom Application Service 69

5 OBP Proxy Extension 71

6 OBP Application Adapters 75

6.1 Adapter Implementation Architecture 75

6.1.1 Package Diagram 75

4

6.1.2 Adapter Mechanism Class Diagram 77

6.1.3 Adapter Mechanism Sequence Diagram 77

6.2 Examples of Adapter Implementation 78

6.2.1 Example – EventProcessingAdapter 78

6.2.2 Example – DispatchAdapter 80

6.2.3 Example – Adapter Implementation Using Groovy 81

6.3 Customizing Existing Adapters 83

6.3.1 Custom Adapter Example – DispatchAdapter 83

6.3.2 Custom Adapter Example – PartyKYCCheckAdapter 84

7 Business Policy Extension 89

7.1 Base Implementation of Business Policy 89

7.2 Extending Business Policy 90

7.3 Configuration 91

7.4 Extensions Using Groovy 91

8 Batch Framework Extensions 93

8.1 Typical Business Day in OBP 93

8.2 Overview of Categories 94

8.2.1 Beginning of Day (BOD) 94

8.2.2 Cut-off 94

8.2.3 End of Day (EOD) 95

8.2.4 Internal EOD 95

8.2.5 Statement Generation 95

8.2.6 Customer Communication 95

8.3 Batch Framework Architecture 95

8.3.1 Static View 96

8.3.2 Dynamic View 97

5

8.4 Batch Framework Components 99

8.4.1 Category Components 99

8.4.2 Shell Components 100

8.4.3 Stream Components 101

8.4.4 Database Components 103

8.5 Batch Configuration 103

8.5.1 Creation of New Category 103

8.5.2 Creation of Bean Based Shell 106

8.5.3 Creation of Procedure Based Shell 111

8.5.4 Population of Other Parameters 113

8.6 Batch Execution 115

9 Uploaded File Data Processing 117

9.1 Configuration 118

9.1.1 Database Tables and Setup 119

9.1.2 File Handlers 122

9.1.3 Record Handlers for Both Header and Details 123

9.1.4 DTO and Keys Classes for Both Header and Details 124

9.1.5 XFF File Definition XML 126

9.2 Processing 129

9.2.1 API Calls in the Handlers 129

9.2.2 Processing Adapter 130

9.3 Outcome 131

9.4 Failure/Exception Handling 132

10 Alerts Extension 133

10.1 Transaction as an Activity 133

10.1.1 Activity Record 133

6

10.1.2 Attaching Events to Activity 134

10.1.3 Event Record 134

10.1.4 Activity Event Mapping Record 135

10.1.5 Activity Log DTO 136

10.1.6 Alert Metadata Generation 136

10.1.7 Alert Message Template Maintenance 139

10.1.8 Alert Maintenance 140

10.2 Alert Subscription 141

10.2.1 Transaction API Changes 142

10.3 Alert Processing Steps 144

10.4 Alert Dispatch Mechanism 147

10.5 Adding New Alerts 150

10.5.1 New Alert Example 151

10.5.2 Testing New Alert 152

10.6 Support For Derived Facts 153

11 Creating New Reports Using Oracle Analytics Publisher 159

11.1 Data Objects for the Report 159

11.2 Catalog Folder 162

11.3 Data Source 163

11.4 Data Model 163

11.5 XML View of Report 167

11.6 Layout of the Report 168

11.7 View Report in Oracle Analytics Publisher 169

11.8 OBP Batch Report Configuration - Define the Batch Reports 170

11.9 OBP Batch Report Configuration - Define the Batch Report Shell 170

11.10 OBP Batch Report Configuration - Define the Batch Report Shell Depend-
encies 171

7

11.11 OBP Batch Report Configuration 171

11.11.1 Batch Report Generation for a Branch Group Code 171

11.11.2 Batch Report Generation Status 172

11.11.3 Batch Report Generation Path 172

11.12 OBP Adhoc Report Configuration 173

11.12.1 Define the Adhoc Reports 173

11.12.2 Define the Adhoc Report Parameters 174

11.12.3 Define the Adhoc Reports to be listed in Screen 174

11.12.4 Adding Screen Tab for Report Module 174

11.13 Adhoc Report Generation – Screen 7775 175

11.14 Adhoc Report Viewing – Screen 7779 176

12 Security Customizations 179

12.1 OPSS Access Policies / Matrix Auth – Adding Attributes 181

12.1.1 Steps 181

12.1.1.1 Example of Matrix_auth conditional rule 184

12.2 OAAM Fraud Assertions – Adding Attributes 187

12.2.1 Steps 187

12.3 Security Validators 189

12.3.1 Customer Validators 190

12.3.2 Account Validators 190

12.3.3 Business Unit Validators 190

12.4 Customizing User Search 191

12.4.1 Steps 191

12.5 Customizing One-Time-Password (OTP) Processing Logic 191

12.5.1 Steps 191

12.6 Customizing Role Evaluation 191

8

12.6.1 Steps 192

12.7 Customizing Limits Exclusions 192

12.7.1 Steps 192

12.8 Customizing Business Rules 192

12.8.1 Steps to Update the Business Rules by Browser 192

12.8.2 Steps to Update the Business Rules in JDeveloper 202

13 Facts and Rules Configuration 207

13.1 Facts 207

13.1.1 Type of Facts 207

13.1.2 Facts Vocabulary 208

13.1.3 Generation of Facts using Eclipse Plug-in 209

13.1.4 Object Facts 229

13.2 Business Rules 232

13.2.1 Rules Engine 232

13.2.2 Rules Creation by Guided Rule Editor 232

13.2.3 Rules Creation By Decision Table 233

13.2.4 Rules Storage 234

13.2.5 Rules Deployment 235

13.2.6 Rules Versioning 235

13.3 Rules Configuration in Modules 235

13.3.1 Generic Rules Configuration 236

13.4 Rules Migration 239

13.4.1 Rules Configured for Modules 239

14 Composite Application Service 243

14.1 Composite Application Service Architecture 243

14.2 Multiple APIs in Single Module 244

9

15 ID Generation 251

15.1 Database Setup 252

15.1.1 Database Configuration 253

15.2 Automated ID Generation 253

15.3 Custom ID Generation 256

16 Extensibility of Domain Objects using Flex Fields 259

16.1 Flex Field - Provisioning 259

16.1.1 How to know Maximum Flex Fields Provisioned for Entity? 259

16.1.2 Increase Maximum Flex Fields Provisioned for Entity (Optional Step) 260

16.2 Flex Field - Utilization 260

16.2.1 Maintain Flex Field Metadata using Seed Data Configuration (Fast
Path: OPA006) Page 260

16.3 Runtime Storage and Retrieval of Flex Field Attribute values 264

16.4 Flex Field - Fact support 265

16.5 Flex Field – Validation Support 267

16.6 Flex Field – Usage Instructions 276

17 Extensibility of Domain Objects - Dictionary Pattern 279

17.1 Customized Domain Object Attribute Placeholders 280

17.2 Customized Domain Object DTO Interceptor in UI Layer 281

17.2.1 Interceptor Hook to Persist Customized Domain Object Attributes 281

17.2.2 Interceptor Hook to Fetch Customized Domain Object Attributes 282

17.3 Dictionary Data Transfer from UI to Host 283

17.3.1 Customized Domain Object DTO Transfer from UI to Host 283

17.3.2 Customized Domain Object DTO transfer from Host to UI 287

17.4 Translating Dictionary Data into Custom Domain Object 291

17.4.1 Instantiation and Persistence of Custom Domain Objects 291

17.4.2 Fetching of Customized Domain Objects 292

10

17.4.3 Defining of Customized Domain Objects 293

17.5 Customized Domain Object ORM Configuration 294

17.5.1 Case 1 - Non-Inheritance based mapping 294

17.5.2 Case 2 - Mapped as ORM Subclass 297

17.5.3 Case 3 - Mapped as ORM Union-Subclass or Joined-Subclass 298

17.5.4 Case 4 - Mapped as ORM Component 301

17.6 Extensibility using Dictionary in Origination Application 301

17.6.1 ICustomDataHandler's as DictionaryArray Interceptor 301

17.6.2 Create Customized Abstract Domain Object Class 302

17.6.3 Create Customized Abstract Domain Object ORM Mapping File 303

17.6.4 Create Customized Abstract Domain Object Attribute Columns 303

17.7 Extensibility using Attributes of Various Supported Datatypes 304

17.8 Customized Domain Object having Collection of Objects as Attributes 309

17.9 Limitation to Extensibility using Dictionary Pattern 312

18 OCH Integration 315

18.1 Integration Adapter Interface 315

18.2 Abstract Integration Adapter Class 316

18.3 Sample Integration Adapter 317

18.4 Integration Abstract Assembler 318

18.5 Sample Assembler 319

19 Documaker Integration 321

19.1 XSD 321

19.2 JAXB Classes 322

19.3 Extractors 325

19.4 Seed Entries 326

19.4.1 JAXB Package Entry 326

11

19.4.2 Extractor Entry 327

12

List of Figures

Figure 3–1 Extending Service Execution 33

Figure 3–2 OBP Application Adapters 34

Figure 3–3 Extending Business Policy 35

Figure 3–4 Batch Framework Extension 36

Figure 3–5 Upload File Processing 37

Figure 3–6 Alerts Extension 38

Figure 3–7 Creating New Reports 39

Figure 3–8 Security Customization 40

Figure 3–9 Facts and Business Rules 41

Figure 3–10 Composite Application Service 42

Figure 3–11 ID Generation 42

Figure 3–12 OCH Integration 43

Figure 4–1 Standard Set of Framework Method Calls 46

Figure 4–2 Extension Hook for Document Type Application Service 47

Figure 4–3 Default Application Service Extension 48

Figure 4–4 Application Service Extension Executor 49

Figure 4–5 Extension Factory Hook for Document Type Application Service 49

Figure 4–6 Factory Implementation of Extension Hook for Document Type Applic-
ation Service 50

Figure 4–7 Application Service Extension Using Groovy 51

Figure 4–8 PROP_ID and CATEGORY_ID 52

Figure 4–9 SUMMARY_TEXT 52

Figure 4–10 Add Groovy Library to Classpath 52

Figure 4–11 Extended Application Service Extension 53

Figure 4–12 Extended Application Service Extension - Post and Pre Hook 54

13

Figure 4–13 Extension Hook for Document Type Application Service Spi Ext 55

Figure 4–14 Default Implementation of Appx Extension 56

Figure 4–15 Extended Application Service Extension Executor 57

Figure 4–16 Extension Factory Hook for Document Type Application Service Spi
Ext 58

Figure 4–17 Factory Implementation of Extension Hook for Document Type Applic-
ation Service Spi Ext 59

Figure 4–18 Application Service Appx Extension using Groovy 60

Figure 4–19 PROP_ID and CATEGORY_ID 60

Figure 4–20 SUMMARY_TEXT 60

Figure 4–21 Add Groovy Library to Classpath 60

Figure 4–22 Maintenance of Document Types 61

Figure 4–23 Document Type Application Service Spi Ext - Appx Layer 62

Figure 4–24 Doc Type Application Service Spi Ext - Appx Layer 63

Figure 4–25 Document Type Application Service Spi Ext - App Layer 64

Figure 4–26 Doc Type Application Service Spi Ext - App Layer 65

Figure 4–27 Pre and Post Middleware Specific Transaction Tasks Overview 66

Figure 4–28 FLX_FW_MW_TASKS 67

Figure 4–29 FLX_FW_MW_TASKS_DTO_DEFN 67

Figure 4–30 FLX_FW_MW_TASKS_DTO_MAP 68

Figure 4–31 FLX_MD_SERVICE_ATTR 68

Figure 4–32 FLX_MD_GEN_ATTR_LEGACY_B 69

Figure 4–33 Custom Application Service 69

Figure 6–1 Package Diagram 76

Figure 6–2 Adapter Mechanism Class Diagram 77

Figure 6–3 Adapter Mechanism Sequence Diagram 78

Figure 6–4 Adapter Implementation Using Groovy 81

14

Figure 6–5 Credit Card Adapter Implementation Using Groovy 82

Figure 6–6 Modify AdapterFactories.properties for GroovyCred-
itCardAdapterFactory 82

Figure 6–7 Modify Preferences.xml for GroovyCreditCardAdapterFactory 82

Figure 6–8 Add Groovy Library to Classpath 83

Figure 6–9 Party KYC Status Check Adapter Interface 85

Figure 6–10 Default Implementation of I Party KYC Check Adapter Interface 85

Figure 6–11 KYC Adapter Factory with Mocking Support 86

Figure 7–1 Business Policy Extension 89

Figure 7–2 validate() method in AbstractBusinessPolicy.java 90

Figure 7–3 validatePolicy() in creditCardBusinessPolicy.java 90

Figure 7–4 Add a preference for custom business policy in preferences.xml 91

Figure 7–5 Extensions using Groovy 92

Figure 8–1 Business Day in OBP 94

Figure 8–2 Batch Framework Architecture - Static View 97

Figure 8–3 Dynamic View Sequence Diagram 98

Figure 8–4 State Diagram of a Shell 99

Figure 8–5 Creation of New Category 106

Figure 8–6 Population of Other Parameters 113

Figure 8–7 Population of Other Parameters - General Tab 113

Figure 8–8 Population of Other Parameters - Connection Pool 114

Figure 8–9 Population of Other Parameters - Set IS_DB_RAC 114

Figure 8–10 Population of Other Parameters - Specify Data 115

Figure 8–11 Batch Execution 115

Figure 9–1 Uploaded Data File Processing Framework 118

Figure 9–2 File Handlers 123

Figure 9–3 Record Handlers for Both Header and Details 124

15

Figure 9–4 DTO and Keys Classes for Both Header and Details - Head-
erRecDTOKey 125

Figure 9–5 DTO and Keys Classes for Both Header and Details -
AbstractDTORec 126

Figure 9–6 XXF File Definition XML 128

Figure 9–7 API Calls in Adapters 130

Figure 9–8 Processing Adapter 131

Figure 10–1 Sample script for Activity Record 134

Figure 10–2 Sample script for Event Record 135

Figure 10–3 Activity Event Mapping Record 135

Figure 10–4 Activity Log DTO 136

Figure 10–5 Metadata Generation 137

Figure 10–6 Service Data Attribute Generation 138

Figure 10–7 Alert Message Template Maintenance 140

Figure 10–8 Alert Maintenance 141

Figure 10–9 Alert Subscription 142

Figure 10–10 Transaction API Changes - Service Call 142

Figure 10–11 Transaction API Changes - Conditional Evaluation 143

Figure 10–12 Transaction API Changes - persistActivityLog(..) 143

Figure 10–13 Transaction API Changes - Activity Log 143

Figure 10–14 Transaction API Changes - Register Activity 144

Figure 10–15 Alert Processing Steps 145

Figure 10–16 Event Processing Status Type 146

Figure 10–17 Batch Alerts 147

Figure 10–18 Alert Dispatch Mechanism 148

Figure 10–19 Alert Dispatch Mechanism - Dispatcher Factory 149

Figure 10–20 Alert Dispatch Mechanism - Destination 150

16

Figure 10–21 Alert.Party.FirstName 154

Figure 10–22 Facts in Alerts Framework 154

Figure 10–23 Alert.Party.PartyId 154

Figure 10–24 Alert.Party.Prefix and Alert.Party.LastName 155

Figure 10–25 Message Template (Fast Path: AL03) 155

Figure 10–26 Placeholder for Derived Facts 156

Figure 10–27 Alert Maintenance (Fast Path: AL04) 156

Figure 10–28 Alert Maintenance - Map the New Message Template Placeholders 157

Figure 10–29 Alert Maintenance - Facts List 157

Figure 10–30 Alert Maintenance - Mapping Completed 158

Figure 10–31 Alert Mail on Mobile Number Update in Contact Point screen 158

Figure 11–1 Creating New Reports 159

Figure 11–2 Global Temporary Table 160

Figure 11–3 Report Record Type 160

Figure 11–4 Report Table Type 161

Figure 11–5 Report DML Function 161

Figure 11–6 Report DDL Function 162

Figure 11–7 Catalog Folder 163

Figure 11–8 Data Source 163

Figure 11–9 Data Model 164

Figure 11–10 Data Set 165

Figure 11–11 Group Fields 165

Figure 11–12 XML Structure and Labels 166

Figure 11–13 XML Code 166

Figure 11–14 Add Input Parameters 167

Figure 11–15 XML View of Report 167

17

Figure 11–16 Layout of the Report - Create Layout 168

Figure 11–17 Layout of the Report - Batch Job Results 169

Figure 11–18 View Report in Oracle Analytics Publisher 169

Figure 11–19 Batch Report Generation for a Branch Group Code 172

Figure 11–20 Batch Report Generation Path 173

Figure 11–21 Adhoc Report Generation - Report Request 175

Figure 11–22 Adhoc Report Generation - Report Generated 176

Figure 11–23 Advice Report 177

Figure 11–24 View Generated Adhoc Report 178

Figure 12–1 Security Customizations Interface 180

Figure 12–2 Security Use Case with Access Checks and Assertions 181

Figure 12–3 Add Attributes Name for Service ID 182

Figure 12–4 Add Service Attributes in SM500 183

Figure 12–5 Constraint Attribute Config with Associated Adapter 183

Figure 12–6 Select Resource Type and Add Service ID 185

Figure 12–7 Add PolicyTable Details 186

Figure 12–8 Add Condition 187

Figure 12–9 Add or Modify Fraud Rules in OAAM - Data Tab 188

Figure 12–10 Add or Modify Fraud Rules in OAAM - Conditions Tab 189

Figure 12–11 Log in to SOA Composer Application screen 193

Figure 12–12 Search Rules file 194

Figure 12–13 Search Rules file -View 195

Figure 12–14 Composite to Configure Routing Rules 196

Figure 12–15 Stages of Approval 197

Figure 12–16 Add pattern-Submission Payload Type 198

Figure 12–17 Add New Test 199

18

Figure 12–18 Select Fact with Appropriate Value 200

Figure 12–19 Create Participant From Group 201

Figure 12–20 Validate Rules File 202

Figure 12–21 Expand Business Rules 203

Figure 12–22 Create New Rule 204

Figure 12–23 Existing Rule 205

Figure 12–24 Change the approval group 206

Figure 13–1 Select Window Preferences 210

Figure 13–2 Window Preferences - OBP Plugin Development 211

Figure 13–3 Enter the Preferences Fact values 212

Figure 13–4 Fact Properties - aggregateCodeFilePath 213

Figure 13–5 Fact Properties - sourceFilePath 214

Figure 13–6 Start Host Server 215

Figure 13–7 Select Open Perspective value 216

Figure 13–8 Fact Explorer 217

Figure 13–9 Fact Vocabulary 218

Figure 13–10 Domain Category 219

Figure 13–11 Fact Groups 220

Figure 13–12 Facts 221

Figure 13–13 Business Definition Tab 222

Figure 13–14 Value Definition Tab 222

Figure 13–15 Enum Definition Tab 223

Figure 13–16 Aggregrate Definition Tab 224

Figure 13–17 Aggregate File Tab 225

Figure 13–18 Creating New Fact - Add 226

Figure 13–19 Creating New Fact - Fact Business Definition 227

19

Figure 13–20 Creating New Fact - Domain Group 228

Figure 13–21 Saving New Fact 228

Figure 13–22 Saving New Fact - Fact Added 229

Figure 13–23 Designate Class as Object Fact 230

Figure 13–24 Object Fact in UI 231

Figure 13–25 Generic Rule Configuration 237

Figure 13–26 Rule Author - Decision Table 238

Figure 13–27 Rule Author - Expression Builder 239

Figure 14–1 Composite Application Service Architecture 244

Figure 15–1 Configuration of ID Generation Process 251

Figure 15–2 Automated ID Generation - Single Record View 254

Figure 15–3 Automated ID Generation - Generate Submission ID 255

Figure 15–4 Automated ID Generation - Submission ID Generation Service 255

Figure 15–5 Custom ID Generation - Custom ID Generator 256

Figure 15–6 Custom ID Generation - Custom ID Generation Constants 257

Figure 15–7 Custom ID Generation - Custom Pattern Based Generator 258

Figure 16–1 OPA006 - Error 261

Figure 16–2 OPA006 - Duplicate Attribute 261

Figure 16–3 OPA006 - Enumeration Type 262

Figure 16–4 OPA006 - Consecutive Attributes Names 262

Figure 16–5 OPA006- Invalid Input for Attribute Data Type. 263

Figure 16–6 Attribute Data Type as Date 263

Figure 16–7 Runtime Storage Saved Data 264

Figure 16–8 Runtime Storage Retrieved Data 265

Figure 16–9 Flex Field - Fact support Saved Data 265

Figure 16–10 Flex Field - Fact support Data in Table 266

20

Figure 16–11 Flex Field - Fact support Seed 266

Figure 16–12 Flex Field - Fact support After Seed 266

Figure 16–13 Flex Field - Validation Support - Metadata 272

Figure 16–14 Flex Field - Validation Support - Mandatory Validation - Input 272

Figure 16–15 Flex Field - Validation Support - Mandatory Validation -Output 273

Figure 16–16 Flex Field - Validation Support - Min/Max Lenght Validation Input 273

Figure 16–17 Flex Field - Validation Support - Min/Max Lenght Validation Output 274

Figure 16–18 Flex Field - Validation Support - Pattern (Regex) Validation Input 274

Figure 16–19 Flex Field - Validation Support - Pattern (Regex) Validation Output 275

Figure 16–20 Flex Field - Validation Support - Enum Validation Input 275

Figure 16–21 Flex Field - Validation Support - Enum Validation Output 275

Figure 16–22 Flex Field - Validation Support - Date Validation Input 276

Figure 16–23 Flex Field - Validation Support - Date Validation Output 276

Figure 17–1 Extensibility of Domain Objects - Framework 280

Figure 17–2 Code Extract 281

Figure 17–3 Interceptor Hook to Persist Customized Domain Object 282

Figure 17–4 Interceptor Hook to Fetch Customized Domain Object 283

Figure 17–5 JSONClient constructs the JSON Object 284

Figure 17–6 SerializeDictionaryArray to include GenericName and Value attrib-
utes 285

Figure 17–7 Host Server JSONFacade extracts the attribute of JSON Object 286

Figure 17–8 AbstractJSONFacade's getDictionaryArray method 287

Figure 17–9 Host Server JSONFacade constructs the JSON Object 288

Figure 17–10 AbstractJSONFacade's serializeDictionaryArray to include Generic
Name and Value attributes 289

Figure 17–11 UI Server JSONClient extracts the DictionaryArray attribute 290

Figure 17–12 AbstractJSONBindingStub's getDictionaryArray method 291

21

Figure 17–13 Instantiation of DataTransferObjects 293

Figure 17–14 Adding Discriminator Column Mapping in Existing ORM file 295

Figure 17–15 ORM File Mapping to Customized Domain Object 295

Figure 17–16 Adding New Java File to the Customized Domain Object 296

Figure 17–17 Adding Extra Columns along with the Discriminator Column 296

Figure 17–18 Adding a New ORM File Mapping to Customized Domain Object 297

Figure 17–19 Adding New Java File to Customized Domain Object 298

Figure 17–20 New ORM File Mapping 299

Figure 17–21 Adding New Java File 299

Figure 17–22 Create a New Table CZ_NAB_LM_PROPOSED_FACILITY 300

Figure 17–23 CustomDataHandler's as DictionaryArray Interceptor 302

Figure 17–24 Create Customized Abstract Domain Object Class 303

Figure 17–25 Create Customized Abstract Domain Object ORM Mapping File 303

Figure 17–26 Create Customized Abstract Domain Object Attribute Columns 303

Figure 17–27 Customized Message Template Class 305

Figure 17–28 Domain Object Table 306

Figure 17–29 ORM File 306

Figure 17–30 JUnit Test Case 307

Figure 17–31 JUnit Adds Table Record 307

Figure 17–32 Dictionary Array Values 308

Figure 17–33 Customized Domain Object having collection of Objects as Attrib-
utes 309

Figure 17–34 Member Attributes of Customized Domain Object 310

Figure 17–35 Dictionary Array Elements 310

Figure 17–36 Customized Domain Object constructed by AbstractAssembler 311

Figure 17–37 Dictionary Array returned by AbstractAssembler 312

Figure 18–1 Integration Adapter Interface 316

22

Figure 18–2 Abstract Integration Adapter Class 317

Figure 18–3 Sample Integration Adapter 318

Figure 18–4 Integration Abstract Assembler 319

Figure 18–5 Sample Assembler 320

Figure 19–1 AddressChangeLetter.xsd 321

Figure 19–2 CustomizedAddressChangeLetter.xsd 322

Figure 19–3 JAXB Classes 323

Figure 19–4 Generate JAXB Classes from Customized XSD 323

Figure 19–5 JAXB Classes Customized XSD 324

Figure 19–6 JAXB Classes in Project 324

Figure 19–7 AddressChangeLetterDataExtractor 325

Figure 19–8 Customized AddressChangeLetterDataExtractor 326

23

List of Tables

Table 6–1 Components of Adapter Implementation 75

Table 8–1 Database Server Components 103

Table 8–2 FLX_BATCH_JOB_CATEGORY_MASTER 104

Table 8–3 FLX_BATCH_JOB_GRP_CATEGORY 104

Table 8–4 FLX_BATCH_JOB_CATEGORY_DEPEND 105

Table 8–5 FLX_BATCH_JOB_SHELL_MASTER 107

Table 8–6 FLX_BATCH_JOB_SHELL_DTLS 108

Table 8–7 FLX_BATCH_JOB_SHELL_DEPEND 109

Table 8–8 Driver Table 109

Table 8–9 Actions Table 110

Table 9–1 FLX_EXT_FILE_UPLOAD_MAST 119

Table 9–2 Mandatory Fields in Record Tables 120

Table 9–3 FLX_EXT_FILE_PARAMS 120

Table 9–4 FLX_BATCH_JOB_SHELL_DTLS 121

Table 9–5 XXF File Definition XML 127

Table 9–6 Process Status 132

Table 10–1 FLX_EP_ACT_B 133

Table 10–2 FLX_EP_EVT_B 134

Table 10–3 FLX_EP_ACT_EVT_B 135

Table 10–4 Key Fields in FLX_MD_SERVICE_ATTR 138

Table 13–1 Example of a Decision Table 233

Table 13–2 Actions 234

Table 13–3 Conditions 234

Table 13–4 Rules Versioning 235

24

Table 13–5 Details of Configured Rules in Modules 239

Table 14–1 Java Classes 244

Table 15–1 FLX_CS_ID_CONFIG_B 252

Table 15–2 FLX_CS_ID_RANGE 252

Table 15–3 FLX_CS_ID_USF 253

Table 16–1 metadata configuration details for validations 267

25

Preface

This guide explains customization and extension of Oracle Banking Enterprise Originations.

This preface contains the following topics:

n Audience

n Documentation Accessibility

n Related Documents

n Conventions

Audience
This guide is intended for the users of Oracle Banking Enterprise Originations.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/us/corporate/accessibility/support/index.html#info or visit
http://www.oracle.com/us/corporate/accessibility/support/index.html#trs if you are hearing impaired.

Related Documents
For more information, see the following documentation:

n For installation and configuration information, see the Oracle Banking Enterprise Originations
Localization Installation Guide - Silent Installation guide.

n For a comprehensive overview of security, see the Oracle Banking Enterprise Originations Security
Guide.

n For the complete list of licensed products and the third-party licenses included with the license, see the
Oracle Banking Enterprise Originations Licensing Guide.

n For information related to setting up a bank or a branch, and other operational and administrative
functions, see the Oracle Banking Enterprise Originations Administrator Guide.

n For information on the functionality and features, see the respective Oracle Banking Enterprise
Originations Functional Overview documents.

n For recommendations of secure usage of extensible components, see the Oracle Banking Enterprise
Originations Secure Development Guide.

Conventions
The following text conventions are used in this document:

26

http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/support/index.html#info
http://www.oracle.com/us/corporate/accessibility/support/index.html#trs

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

27

28 | Oracle Banking Enterprise Originations Host Extensibility Guide

1 About This Guide

This guide is applicable for the following products:

n Oracle Banking Platform

n Oracle Banking Enterprise Originations

n Oracle Banking Enterprise Default Management

References to Oracle Banking Platform or OBP in this guide apply to all the above mentioned products.

1 About This Guide | 29

30 | Oracle Banking Enterprise Originations Host Extensibility Guide

2 Objective and Scope

This chapter defines the objective and scope of this document.

2.1 Overview
Oracle Banking Platform (OBP) is designed to help banks respond strategically to today’s business
challenges, while also transforming their business models and processes to reduce operating costs and
improve productivity across both front and back offices. It is a one-stop solution for a bank that seeks to
leverage Oracle Fusion experience for its core banking operations, across its retail and corporate offerings.

OBP provides a unified yet scalable IT solution for a bank to manage its data and end-to-end business
operations with an enriched user experience. It comprises pre-integrated enterprise applications leveraging
and relying on the underlying Oracle Technology Stack to help reduce in-house integration and testing efforts.

2.2 Objective and Scope
Most product development can be accomplished through highly flexible system parameters and business
rules. Further competitive differentiation can be achieved through IT configuration and extension support. In
OBP, additional business logic required for certain services is not always a part of the core product
functionality but could be a client requirement. For these purposes, extension points and customization
support have been provided in the application code which can be implemented by the bank and / or by
partners, wherein the existing business logic can be added with or overridden by customized business logic.
This way the time consuming activity of custom coding to enable region specific, site specific or bank specific
customizations can be minimized.

2.2.1 Extensibility Objective
The broad guiding principles with respect to providing extensibility in OBP are summarized below:

n Strategic intent for enabling customers and partners to extend the application.

n Internal development uses the same principles for client specific customizations.

n Localization packs

n Extensions by Oracle Consultants, Oracle Partners, Banks or Bank Partners.

n Extensions through the addition of new functionality or modification of existing functionality.

n Planned focus on this area of the application. Hence, separate budgets specifically for this.

n Standards based - OBP leverages standard tools and technology

n Leverage large development pool for standards based technology.

n Developer tool sets provided as part of JDeveloper and Eclipse for productivity.

2.3 Complementary Artefacts
The document is a developer’s extensibility guide and does not intend to work as a replacement of the
functional or technical specification, which would be the primary resource covering the following:

2 Objective and Scope | 31

2.4 Out of Scope

n OBP Zen training course

n OBP installation and configuration

n OBP parameterization as part of implementation

n Functional solution and product user guide

References to plugin indicate the eclipse based OBP development plugin for relevant version of OBP being
extended. The plugin is not a product GA artefact and is a means to assist development. Hence, the same is
not covered under product support.

2.4 Out of Scope
The scope of extensibility does not intend to suggest that OBP is forward compatible.

32 | Oracle Banking Enterprise Originations Host Extensibility Guide

3 Overview of Use Cases

The use cases that are covered in this document shall enable the developer in applying the discipline of
extensibility to OBP. While the overall support for customizations is complete in most respects, the same is
not a replacement for implementing a disciplined, thoughtful and well-designed approach towards
implementing extensions and customizations to the product.

3.1 Extensibility Use Cases
This section gives an overview of the extensibility topics and customization use cases to be covered in this
document. Each of these topics is detailed in the further sections.

3.1.1 Extending Service Execution
In OBP, additional business logic might be required for certain services. This additional logic is not part of the
core product functionality but could be a client requirement. For these purposes, hooks have been provided in
the application code wherein additional business logic can be added or overridden with custom business logic.

Figure 3–1 Extending Service Execution

Following are the two hooks provided:

Service Extensions

3 Overview of Use Cases | 33

3.1 Extensibility Use Cases

This hook resides in the app layer of the application service. This hook is present for, before as well after the
actual service execution. The additional business logic has to implement the interface I<service_
name>ApplicationServiceExt and extend and override the default implementationVoid<service_
name>ApplicationServiceExt provided for the service. Multiple implementations can be defined for a
particular service. The service extensions executor invokes all the implementations defined for the particular
service both before and after the actual service executes.

Service Provider Extension

This hook resides in the appx layer of the application service. This hook, too, is present for before as well after
the actual service execution. The additional business logic has to implement the interface I<service_
name>ApplicationServiceSpiExt and extend and override the default implementationVoid<service_
name>ApplicationServiceExt provided for the service. Multiple implementations can be defined for a
particular service. The service extensions executor invokes all the implementations defined for the particular
service both before and after the actual service executes.

3.1.2 OBP Application Adapters
In OBP, adapters are used for helping two different modules or systems to communicate with each other. It
helps the consuming side adapt to any incompatibility of the invoked interface to work together. This is done
to achieve cleaner build time separation of different functional product processor modules. Hence, when Loan
Module needs to invoke services of Party Module or Demand Deposit module then an adapter class owned by
the Loans module will be used to ensure that functions such as defaulting of values, mocking of an interface,
and so on, are implemented in the adapter layer thereby relieving the core module functionality from getting
corrupted.

Figure 3–2 OBP Application Adapters

3.1.3 Extending Business Policy
In OBP, business policies are used for common business validations. For instance, credit card number
validation to check whether or not the credit card number entered by user complies with the specified format
or exists in the record. Business policy implementation strategy is based on factory design pattern and
implements a common business policy factory class for each module. All the business policy factory classes

34 | Oracle Banking Enterprise Originations Host Extensibility Guide

3.1 Extensibility Use Cases

extend to AbstractBusinessPolicyFactory Class. AbstractBusinessPolicyFactory Class returns the
BusinessPolicy class instance which extends to AbstractBusinessPolicy class. Application service invokes
the validate() method in AbstractBusinessPolicy class which in turn invokes validatePolicy() method in the
BusinessPolicy class.

Custom BusinessPolicies are implemented in OBP by configuring preferences in the preferences.xml file. In
this file a preference for customBusinessPolicy is defined which represents a query to the database. For
customization, create an entry in the Flx_or_config_all_b table with preference name and businessPolicy
code.

When application service invokes the createPolicyInstance() method of the BusinessPolicyFactory class,
this class invokes a getPolicyInstance() method of the AbstractBusinessPolicy class which looks for any
custom businessPolicy class in the database and returns the custom class if it gets one. Otherwise it returns
null, and a new instance of base BusinessPolicy class is created and returned to the invoking application
service.

Figure 3–3 Extending Business Policy

3.1.4 User Defined Fields
Custom Entities: Additional fields can be added to objects / entities from the very base level (ORM / POJO
layer) to the front end (View layer) level. This way is more costly since it requires changes at all layers of the
application. However, it has an advantage of the ability to use the additional data in the business logic of the
application.

n Client: The UI of the screen in which the additional data needs to be captured has to be modified for
the additional fields. The view-service linkage also needs to be modified for transferring the additional
data.

n Host:On the host side, the ORM and POJO for the entity have to be modified to save the additional
field's data. The service layer has to be modified for any business logic that is affected by the
additional fields.

3.1.5 Batch Framework Extension
This extensibility feature is provided because most of the enterprise applications require the bulk processing
of records to perform business operations in real-time environments. These business operations include
complex processing of large volumes of information that is most efficiently processed with minimal or no user
interaction. Such operations includes time-based events (For example, month-end calculations, notices or
correspondence), periodic application of complex business rules processed repetitively across very large data
sets (For example, rate adjustments).

3 Overview of Use Cases | 35

3.1 Extensibility Use Cases

All such scenarios form a part of batch processing for multiple records. Thus, Batch processing is used to
process billions of records for enterprise applications. There are many categories in OBP Batch Processes
like Beginning of Day (BOD), End of Day (EOD), and Statement Generation, and so on, for which the batch
execution is performed.

Figure 3–4 Batch Framework Extension

3.1.6 Uploaded File Processing
File processing is an independent process and is done separately after file upload. Every upload provides a
unique file ID for the uploaded file. The processing is then done for each upload as per the required
functionality. The final status is provided at the end of the processing in the form of ProcessStatus.

An example can be salary credit processing. Once the employer account details (in header records) and the
multiple employee account details (in detail records) are uploaded through the file upload, the salary credit
processing can be done in which the employer account will be debited and the multiple accounts of the
employees will be credited.

36 | Oracle Banking Enterprise Originations Host Extensibility Guide

3.1 Extensibility Use Cases

Figure 3–5 Upload File Processing

3.1.7 Alert Extension
OBP has to interface with various systems to transfer data which is generated during business activities that
take place during teller operations or processing. The system requires a framework which can support on-line
data transfer to interfacing systems.

This extension of event processing module of OBP provides a framework for identifying executing host
services as activities and generating / raising events that are configured against the same. Generation of
these events results in certain actions that can vary from dispatching data to subscribers (customers or
external systems) to execution of additional logic. The action whereby data is dispatched to subscribers is
termed as Alert. In OBP application, these Alerts can be customized and configured.

3 Overview of Use Cases | 37

3.1 Extensibility Use Cases

Figure 3–6 Alerts Extension

3.1.8 Create New Reports Using Oracle Analytics Publisher
OBP application provides functionality for configuring multiple reports through integrated Oracle Analytics
Publisher. It is a standalone reporting and document output management solution that allows companies to
lower the cost of ownership for separate reporting solutions. The developer can add and configure an Adhoc
report to OBP using the Oracle Analytics Publisher.

The OBP application also has a batch framework using which a developer can easily add batch processes,
also known as batch shells, to the application. The batch framework executes all the batch shells defined in
the system as per their configuration. The results of these batch shell executions are stored in the database.
In OBP, the user can create and customize the batch reports based on the requirements which can vary from
client to client.

38 | Oracle Banking Enterprise Originations Host Extensibility Guide

3.1 Extensibility Use Cases

Figure 3–7 Creating New Reports

3.1.9 Security Customization
OBP application comprises of several modules which have to interface with various systems in an enterprise
to transfer/share data. This data is generated during business activity that takes place during teller operations
or processing. While managing the transactions that are within OBP's domain, it also needs to consider
security and identity management and the uniform way in which these services need to be consumed by all
applications in the enterprise. This is possible if these capabilities can be externalized from the application
itself and are implemented within products that are specialized to handle such services.

3 Overview of Use Cases | 39

3.1 Extensibility Use Cases

Figure 3–8 Security Customization

OBP application therefore provides functionality where there is a provision for customizing the security
attributes or functions. For example:

n Attributes participating in access policy rules

n Attributes participating in fraud assertion rules

n Attributes participating in matrix based approval checks

n Account validator

n Customer validator

n Business unit validator

n Adding validators

n Customizing user search

n Customizing 2FA ‘Send OTP | Validate OTP’ logic

n Customizing Role Evaluation

n Customizing Limit Exclusions

40 | Oracle Banking Enterprise Originations Host Extensibility Guide

3.1 Extensibility Use Cases

3.1.10 Facts and Business Rules
Fact (in an abstract way) is something which is a reality or which holds true at a given point of time. Business
rules are made up of facts. Business Rules are defined for improving agility and for implementing business
policy changes. This agility, meaning fast time to market, is realized by reducing the latency from approved
business policy changes to production deployment to near zero time. In addition to agility improvements,
Business Rules development also requires far fewer resources for implementing business policy changes.
This means that Business Rules not only provide agility, it also provides the bonus of cost reduced
development.

Figure 3–9 Facts and Business Rules

3.1.11 Composite Application Service
OBP provides the extensibility feature by which user can write the composite service in which multiple
service calls can be made as part of single call. Transactions in composite application service are made by
composing the single transaction out of the multiple APIs transaction that gives the effect of single
transaction.

3 Overview of Use Cases | 41

3.1 Extensibility Use Cases

Figure 3–10 Composite Application Service

3.1.12 ID Generation
OBP is shipped with the functionality of ID generation in three ways that is, Automatic, Manual and Custom.
These three configurations can be defined by the user as per their requirements and IDs can be generated
accordingly.

Figure 3–11 ID Generation

3.1.13 OCH Integration
OBP provides various integration adapters and assemblers which are used to publish customer information to
OCH. These adapters and assemblers can be customized for publishing details to OCH.

42 | Oracle Banking Enterprise Originations Host Extensibility Guide

3.1 Extensibility Use Cases

Customization developer can extend the existing integration adapters to fetch or gather more information
about the customer and customize integration assembler to add new mappings.

Figure 3–12 OCH Integration

3.1.14 Documaker Integration
Document generated using Documaker consists of Static and Dynamic data. OBP sends dynamic data
(which needs to be populated inside a document) to Documaker Server in XML format. For this purpose, OBP
provides various extractors which are used to extract data from OBP and send it to the Documaker server.
These extractors can be customized according to the requirement of the data.

Customization developer can extend existing extractors and new extractor can gather additional information
that needs to be populated inside a document.

3 Overview of Use Cases | 43

44 | Oracle Banking Enterprise Originations Host Extensibility Guide

4 Extending Service Executions

This chapter describes how additional business logic can be added prior to execution (pre hook) and/or post
the execution (post hook) of particular application service business logic on the host side. Extension prior to a
service execution can be required for the purposes of additional input validation, input manipulation, custom
logging and so on. A few examples in which the application service extensions in the form of pre and post
hook could be required are mentioned below.

Note: Consulting service extensions must be done only at the product SPI level / APPX Level only. It MUST
not be on product APP services. Highlight missing SPIs to Product Team.

An application service extension in the form of a pre hook can be important in the following scenarios:

n Additional input validations

n Execution of business logic, which necessarily has to happen before going ahead with normal service
execution.

An application service extension in the form of a post hook can be important in the following scenarios:

n Output response manipulation

n Third party system calls in the form of web service invocation, JMS interface and so on.

n Custom data logging for subsequent processing or reporting.

The OBP application provides two layers where the pre and post extension hooks for extending service
execution can be implemented. These places are:

n Application Service layer – referred to as the “app” layer extension.

n Extended Application Service – referred to as the “appx” layer extension.

There are few differences in the extensions of the app and appx layer:

n In the appx layer extension, the validations can be added against the user defined fields which is not
possible in case of the app layer.

n In the appx layer extension, the service response can be passed when the return type is not
transaction status. This response can be validated or updated which is not available in case of app
layer.

n In the appx layer, the approvals can be incorporated and can be validated in the appx layer extension
which is not possible in app layer.

4.1 Service Extension – Extending the "app" Layer
The "app" layer is referred to as the application service layer. It denotes the business logic that executes as
part of a service method exposed by OBP middleware host. Extension points provided as pre and post hooks
are present in this layer at the same points in the service. Every application service method has a standard
set of framework method calls as shown in the sequence diagram below:

4 Extending Service Executions | 45

4.1 Service Extension – Extending the "app" Layer

Figure 4–1 Standard Set of Framework Method Calls

The pre hook is provided after the invocation of createTransactionContext call inside the application service.
At this step, the transaction context is set and the host application core framework is aware of the executing
service with respect to the authenticated subject or the user who has posted the transaction, transaction
inputs, financial dates, different determinant types applicable for the executing service, an initialized status
and has the ability to track the same against a unique reference number. At this step, the database session is
also initialized and accessible enabling the user to use the same in the pre hook for any database access
which needs to be made.

The post hook is provided after the business logic corresponding to the application service invoked has
executed and before the successful execution of the entire service is marked in the status object. This
ensures that the status marking takes into consideration any execution failures of post hook prior to reporting
the result to the calling source. Both, the pre and the post hooks accept the service input parameters as the
inputs.

The following sections explain important concepts, which should be understood for extending in this service
layer.

4.1.1 Application Service Extension Interface
The OBP plug-in for eclipse generates an interface for the extension of a particular service. The interface
name is in the form I<Service_Name>ApplicationServiceExt. This interface has a pair of pre and post method
definitions for each application service method of the present. The signatures of these methods are:

46 | Oracle Banking Enterprise Originations Host Extensibility Guide

4.1 Service Extension – Extending the "app" Layer

public void pre<Method_Name>(<Method_Parameters>) throws
FatalException;
public void post<Method_Name>(<Method_Parameters>) throws
FatalException;

A service extension class has to implement this interface. The pre method of the extension is executed before
the actual service method and the post method of the extension is executed after the service method.

Figure 4–2 Extension Hook for Document Type Application Service

4.1.2 Default Application Service Extension
The OBP plug-in for eclipse generates a default extension for a particular service in the form of the class
Void<Service_Name>ApplicationServiceExt. This class implements the aforementioned service extension
interface without any business logic if the implemented methods are empty.

The default extension is a useful and convenient mechanism to implement the pre and / or post extension
hooks for specific methods of an application service. Instead of implementing the entire interface, one should
extend the default extension class and override only required methods with the additional business logic.
Product developers DO NOT implement any logic, including product extension logic, inside the default
extension classes. This is because the classes are auto-generated and reserved for product use and get
overwritten as part of a bulk generation process.

4 Extending Service Executions | 47

4.1 Service Extension – Extending the "app" Layer

Figure 4–3 Default Application Service Extension

4.1.3 Application Service Extension Executor
The OBP plug-in for eclipse generates a service extension executor interface and an implementation for the
executor interface. The naming convention for the generated executor classes which enable ’extension
chaining’ is as shown below:

Interface : I<Application Service
Qualifier>ApplicationServiceExtExecutor

Implementation : <Application Service
Qualifier>ApplicationServiceExtExecutor

The service extension executor class, on load, creates an instance each of all the extensions defined in the
service extensions configuration file. If no extensions are defined for a particular service, the executor creates
an instance of the default extension for the service. The executor also has a pair of pre and post methods for
each method of the actual service. These methods in turn call the corresponding methods of all the extension
classes defined for the service.

48 | Oracle Banking Enterprise Originations Host Extensibility Guide

4.1 Service Extension – Extending the "app" Layer

Figure 4–4 Application Service Extension Executor

Figure 4–5 Extension Factory Hook for Document Type Application Service

4 Extending Service Executions | 49

4.1 Service Extension – Extending the "app" Layer

Figure 4–6 Factory Implementation of Extension Hook for Document Type Application Service

4.1.4 Extension Configuration
The extension classes that implement the extension interface are mapped to the application service class
with the help of a property file mapping inside serviceextensions.properties. The mapping convention to be
specified is a service's fully qualified class name to comma separated extensions' fully qualified class name
in the following format:

<service_class_name>=<extension_class_name>,<extension_class_
name>...

Example Mapping : config/properties/serviceextensions.properties

Single extension configuration

com.ofss.fc.app.content.service.DocumentTypeApplicationService=
com.ofss.fc.app.content.service.ext.DocumentTypeApplicationService
Ext

Multiple extension configuration

com.ofss.fc.app.content.service.DocumentTypeApplicationService=

50 | Oracle Banking Enterprise Originations Host Extensibility Guide

4.1 Service Extension – Extending the "app" Layer

com.ofss.fc.app.content.service.ext.in.DocumentTypeApplicationServ
iceExtension,
com.ofss.fc.app.content.service.ext.in.mum.DocumentTypeApplication
ServiceExtension,
com.ofss.fc.app.content.service.ext.in.mum.ExtendedDocumentTypeApp
licationService,
com.ofss.fc.app.content.service.ext.in.blr.DocumentTypeApplication
ServiceExtension,
com.ofss.fc.app.content.service.ext.in.blr.ExtendedDocumentTypeApp
licationService

It is possible to configure multiple implementations of pre / post extensions for an executing service in this
layer. This is achieved with the help of the extension executor which has the capability to loop through a set of
extension implementations which conform to the extension interface which is supported by the service.

4.1.5 Application Service Extension Using Groovy
Application service extension can be implemented using Groovy. The sample code and steps for service
extension implementation using groovy is as follows:

Service extension groovy implementation class 'VoidSubmissionDocumentApplicationServiceExt'
implementing product service extension interface
'com.ofss.fc.app.origination.service.core.submissiondocument.ext.ISubmissionDocumentApplicationServic
eExt.

Figure 4–7 Application Service Extension Using Groovy

4 Extending Service Executions | 51

4.2 Extended Application Service Extension – Extending the "appx" Layer

Provide the fully qualified name of the above groovy implementation in flx_fw_config_all_b against the
corresponding service extension prop_id and category_id.

Figure 4–8 PROP_ID and CATEGORY_ID

Figure 4–9 SUMMARY_TEXT

Package the above implementation and add in custom library which the application is referring to and add the
groovy li in the classpath of the server which will be taken care by deployment team.

Figure 4–10 Add Groovy Library to Classpath

4.2 Extended Application Service Extension – Extending the
"appx" Layer
The "appx" layer is referred to as the extended application service layer. It represents the business logic that
executes as part of a service method exposed by OBP middleware host with additional internal service calls
to support extended features such as custom fields (that is, Dictionary pattern). The appx layer also provides
extension support, on top of and on the lines of the app layer. The implementation of extension support in this
layer is similar to the implementation of extension support in the app layer.

52 | Oracle Banking Enterprise Originations Host Extensibility Guide

4.2 Extended Application Service Extension – Extending the "appx" Layer

Figure 4–11 Extended Application Service Extension

The pre hook is provided before the invocation of actual application service call inside the extended
application service layer. At this step, the extended host application core framework is aware of the executing
service with respect to the authenticated subject or the user who has posted the transaction and an initialized
status. At this step, the database session is also initialized and accessible enabling the user to use the same
in the pre hook for any database access which might be required.

The post hook is provided after the primary application service which is extended in the appx layer along with
the remaining internal service calls. This is required to support extended features like approval related
processing and to complete execution before marking the service execution status as successful in the
status object. This ensures that the status marking takes into consideration any execution failures of post
hook prior to reporting the result to the calling source. Both, the pre and the post hooks accept the service
input parameters including the approval view input data as their inputs. Additionally, if the response type of the
object returned by the primary app layer application service is other TransactionStatus, the same is also
accepted as input by the post hook.

The following sections explain the important concepts which should be understood for extending in this appx
layer.

4 Extending Service Executions | 53

4.2 Extended Application Service Extension – Extending the "appx" Layer

Figure 4–12 Extended Application Service Extension - Post and Pre Hook

The following concepts are important for extending in this service provider layer:

4.2.1 Extended Application Service Extension Interface
The OBP plug-in for eclipse generates an interface for the extension of a particular service. The interface
name is in the form I<Service_Name>ApplicationServiceSpiExt. This interface has a pair of method
definitions for each method of the present in the actual service. The signatures of these methods are:

public void pre<Method_Name>(<Method_Parameters>) throws
FatalException;
public void post<Method_Name>(<Method_Parameters>) throws
FatalException;

An extended application service extension class has to implement this interface. The pre method of the
extension is executed before the actual service method and the post method of the extension is executed
after the service method.

54 | Oracle Banking Enterprise Originations Host Extensibility Guide

4.2 Extended Application Service Extension – Extending the "appx" Layer

Figure 4–13 Extension Hook for Document Type Application Service Spi Ext

4.2.2 Default Implementation of Appx Extension
The OBP plug-in for eclipse generates a default service extension for a particular service in the form of the
class Void<Service_Name>ApplicationServiceSpiExt. This class implements the aforementioned service
provider extension interface without any business logic viz. the implemented methods are empty.

The default extension is a useful and convenient mechanism to implement the pre and / or post extension
hooks for specific methods of an application service. Instead of implementing the entire interface, one should
extend the default extension class and override only required methods with the additional business logic.
Product developers DO NOT implement any logic, including product extension logic, inside the default
extension classes. This is because the classes are auto-generated and reserved for product use and may get
overwritten as part of a bulk generation process.

4 Extending Service Executions | 55

4.2 Extended Application Service Extension – Extending the "appx" Layer

Figure 4–14 Default Implementation of Appx Extension

4.2.3 Configuration
The service provider extension class to the service class mapping is defined in a property file
ServiceProviderExtensions.properties under "config/properties". Multiple extensions can be defined for a
particular service provider with the help of the extension executor. The pre and post extensions are defined in
the service layer.

The mapping is specified for a service provider extension interface's fully qualified class name to service
provider extension class's fully qualified class name in the following format:

<service_provider_interface_name>=<service_provider_extension_
class_name>,<service_provider_extesion_class_name>
Example Mapping :
config/properties/ServiceProviderExtensions.properties
Single extension configuration
com.ofss.fc.appx.content.service.ext.DocumentTypeApplicationServic
eSpi=
com.ofss.fc.appx.content.service.ext.DocumentTypeApplicationServic
eSpiExt
Multiple extension configuration
com.ofss.fc.appx.content.service.ext.DocumentTypeApplicationServic
eSpi=

56 | Oracle Banking Enterprise Originations Host Extensibility Guide

4.2 Extended Application Service Extension – Extending the "appx" Layer

com.ofss.fc.appx.content.service.ext.in.DocumentTypeApplicationSer
viceExt,
com.ofss.fc.appx.content.service.ext.in.mum.DocumentTypeApplicatio
nServiceExt,
com.ofss.fc.appx.content.service.ext.in.mum.ExtendedDocumentTypeAp
plicationService,
com.ofss.fc.appx.content.service.ext.in.blr.DocumentTypeApplicatio
nServiceExt,
com.ofss.fc.appx.content.service.ext.in.blr.ExtendedDocumentTypeAp
plicationService

4.2.4 Extended Application Service Extension Executor
The OBP plug-in for eclipse generates a service provider extensions executor interface and an
implementation class in the form of the following naming convention.

I<ApplicationServiceQualifier>ApplicationServiceSpiExtExecutor
<ApplicationServiceQualifier>ApplicationServiceSpiExtExecutor

The extended application service extension executor class, on load, creates an instance each of all the
extensions defined in the service provider extensions configuration file. If no extensions are defined for a
particular service provider, the executor creates an instance of the default extension for the appx service. The
executor also has a pair of pre and post methods for each method of the actual appx service. These methods
in turn delegate the call to the corresponding methods of all the extension classes configured inside the
properties file for the service provider.

Figure 4–15 Extended Application Service Extension Executor

4 Extending Service Executions | 57

4.2 Extended Application Service Extension – Extending the "appx" Layer

Figure 4–16 Extension Factory Hook for Document Type Application Service Spi Ext

58 | Oracle Banking Enterprise Originations Host Extensibility Guide

4.2 Extended Application Service Extension – Extending the "appx" Layer

Figure 4–17 Factory Implementation of Extension Hook for Document Type Application Service Spi Ext

4.2.5 Application Service "appx" Extension using Groovy
Application service extension can be implemented using Groovy. The sample code and steps for service
extension implementation using groovy is as follows:

Service extension groovy implementation class 'VoidSubmissionDocumentApplicationServiceExt'
implementing product service extension interface
'com.ofss.fc.app.origination.service.core.submissiondocument.ext.ISubmissionDocumentApplicationServic
eExt.

4 Extending Service Executions | 59

4.2 Extended Application Service Extension – Extending the "appx" Layer

Figure 4–18 Application Service Appx Extension using Groovy

Provide the fully qualified name of the above groovy implementation in flx_fw_config_all_b against the
corresponding service extension prop_id and category_id.

Figure 4–19 PROP_ID and CATEGORY_ID

Figure 4–20 SUMMARY_TEXT

Package the above implementation and add in custom library which the application is referring to and add the
groovy li in the classpath of the server which will be taken care by deployment team.

Figure 4–21 Add Groovy Library to Classpath

60 | Oracle Banking Enterprise Originations Host Extensibility Guide

4.3 End-to-End Example of an Extension

4.3 End-to-End Example of an Extension
This section gives an end-to-end example of extensions written in the appx layer using the extended
application service extensions as well as app layer application service extensions. The example shall
implement this by extending the default implementation of the appx extension class
Void<ApplicationServiceQualifier>ApplicationServiceSpiExt class and app extension class
Void<ApplicationServiceQualifier>ApplicationServiceExt.

For example, Back Office -> Content -> Document Type Definition screen of the application.

This screen is used for the maintenance of Document Types defined in the application.

Figure 4–22 Maintenance of Document Types

The Create tab of the screen allows a user to create document types in the application. On click of Ok, and
after successful validation of the input entered by the user, the screen extracts the values. It calls the
DocumentTypeApplicationServiceSpi (in appx layer) and DocumentTypeApplicationService (in app layer) on
the host application to save the document type in the system.

In this example, we have added multiple extensions to this service of the appx layer through the extension
executor, where the update of the description is done in one of the extension and check the length of name in
another in the pre extension method.

4 Extending Service Executions | 61

4.3 End-to-End Example of an Extension

Figure 4–23 Document Type Application Service Spi Ext - Appx Layer

62 | Oracle Banking Enterprise Originations Host Extensibility Guide

4.3 End-to-End Example of an Extension

Figure 4–24 Doc Type Application Service Spi Ext - Appx Layer

In this example, we have added multiple extensions to the service of the app layer through the extension
executor. We have implemented a not null and size check on the document tags in pre hook of the app layer to
validate that document tags are sent as input in the application service.

4 Extending Service Executions | 63

4.3 End-to-End Example of an Extension

Figure 4–25 Document Type Application Service Spi Ext - App Layer

64 | Oracle Banking Enterprise Originations Host Extensibility Guide

4.4 Support for Middleware Specific Tasks and Application service

Figure 4–26 Doc Type Application Service Spi Ext - App Layer

4.4 Support for Middleware Specific Tasks and Application
service
In case of OBP middleware implementation, SPI layer has ability to perform tasks before and after execution
of application service. Also, you can have customized implementation of application service.

Following are the advantages of this feature:

1. OBP signatures and Spi content will be same across all sites irrespective of OBP-middleware or
Product processor implementation.

2. No appreciable change is required when the bank migrates from OBP Middleware to a full-fledged OBP
product processor implementation.

3. OBP Middleware signatures are self-sufficient to address integrations to non-OBP core servicing
systems and there is no need for wrapper consulting Spi class to be created.

4.4.1 Pre and Post Middleware Specific Transaction Tasks Overview
n Methods ‘performMiddlewareSpecificPreTransactionTasks’ and

‘performMiddlewareSpecificPostTransactionTasks’ is available in every spi to execute tasks.

4 Extending Service Executions | 65

4.4 Support for Middleware Specific Tasks and Application service

n Pre tasks generally includes request enrichment, pre transaction auditing, business policy validations,
post tasks generally includes alert processing, notification to external system.

n For example, in HDFC bank, in fund transfer transactions referenceNumber field is defaulted in pre
processing if request comes from net banking.

n Tasks will be performed only in case of middleware implementation.

n Response enrichment: Response fields can be populated via metadata mapping.

n Example: “com.ofss.fc.appx.party.service.core.PartyApplicationServiceSpi.fetchPartyDetails”
method look like this.

Figure 4–27 Pre and Post Middleware Specific Transaction Tasks Overview

4.4.2 Sample Configuration
Middleware task configuration is based on channel and service Id. The DB tables associated with the
execution steps are:

n FLX_FW_MW_TASKS: This table is used to make entries for middleware specific task based on
channel and service id.

Sample entry for ‘com.ofss.fc.appx.party.service.core.PartyApplicationServiceSpi. fetchPartyDetails'
will look like, where PartyDeatilsAdapter is having several methods to perform tasks like pre business
policy, post business policy, pre and post processing.

66 | Oracle Banking Enterprise Originations Host Extensibility Guide

4.4 Support for Middleware Specific Tasks and Application service

Figure 4–28 FLX_FW_MW_TASKS

n FLX_FW_MW_TASKS_DTO_DEFN: This table is used to make entires for DTO class and DTO
fields for response enrichment purpose.

Sample entry for service name
‘com.ofss.fc.appx.party.service.core.PartyApplicationServiceSpi.fetchPartyDetails’ will look like,
where PartyInquiryResponse is response type and AdapterResponsibilityChainResponse is type of
holder dto for response enrichment.

Figure 4–29 FLX_FW_MW_TASKS_DTO_DEFN

n FLX_FW_MW_TASKS_DTO_MAP: This table is used to establish mapping between flw_fw_mw_
tasks_dto_defn columns(dto class and dto field) and task entry defined in flx_fw_mw_tasks column
(call_attr_id).

Sample entry for service id
'com.ofss.fc.appx.party.service.core.PartyApplicationServiceSpi.fetchPartyDetails (service name +
service method name) task entry and response enrich dto field mappings, where field name
postExecutionResponse is having mapping with PartyDetailsAdapter method
fetchPartyDetailsPostProcesing through cod_attr_id PARTY_DATAILS_PreProcessing.

4 Extending Service Executions | 67

4.4 Support for Middleware Specific Tasks and Application service

Figure 4–30 FLX_FW_MW_TASKS_DTO_MAP

n FLX_MD_SERVICE_ATTR: This table is used to keep entry for source and destination dto for
response enrichment purpose through column entry ref_field_defn_id.

Sample entry for service id
'com.ofss.fc.appx.party.service.core.PartyApplicationServiceSpi.fetchPartyDetails', where enriched
dto fields through adapter method having cod_attr_id like RESP_ENRICH.X.

Figure 4–31 FLX_MD_SERVICE_ATTR

n FLX_MD_GEN_ATTR_LEGACY_B: This table contains all the attributes for metadata, while making
entry for attribute which has to enriched you can append responseenrich in cod_constraint_attr_id so
you can differentiate between actual service attributes entry and response enriched entry.

Sample entry for PartyInquireResponse fields with their respective data type.

68 | Oracle Banking Enterprise Originations Host Extensibility Guide

4.4 Support for Middleware Specific Tasks and Application service

Figure 4–32 FLX_MD_GEN_ATTR_LEGACY_B

4.4.3 Custom Application Service
n In SPI method createBusinessServiceInstance is used to get customized instance of application

service.

n Custom Application Service name is maintained 'CustomEntities' preferences.

n For example com.ofss.fc.appx.party.service.core.PartyApplicationServiceSpi.fetchPartyDetails can
call com.ofss.cz.hdfc.app.party.service.core.PartyApplicationService.fetchPartyDetails.

Figure 4–33 Custom Application Service

4 Extending Service Executions | 69

70 | Oracle Banking Enterprise Originations Host Extensibility Guide

5 OBP Proxy Extension

OBP Proxy Extension functionality is driven by a preference named "ProxyFacadeExtension" whose key-
value properties are provided by a java class - com.ofss.fc.common.ProxyFacadeExtensionConfig. This
java class will have fully qualified name (replacing '.' With '_') of a proxy as a variable name and fully qualified
name of a target proxy as a variable value.

For example,

public final String com_ofss_fc_xyz_ProductProxyFacade =
"com.ofss.fc.osb.xyz.ProductProxyFacade"; // notice usage of '_' in
place of '.' in variable name.

Sample Existing Code:
public TransactionStatus addReferenceObject(SessionContext
sessionContext, ReferenceObjectDTO referenceObjectDTO) throws
FatalException, ServiceException {
if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE, THIS_COMPONENT_NAME + " addReferenceObject()
Entry");
logger.log(Level.FINE, logAppServiceMessage(sessionContext));
logger.log(Level.FINE, logAppServiceMessage(referenceObjectDTO));
}
TransactionStatus returnObj = null;
try {
this.overrideProtocol
("ReferenceObjectApplicationServiceProxy.addReferenceObject");
this.populateDictionaryData(referenceObjectDTO);
if ("JSON".equals(protocol) && "APP".equals(hostApplicationLayer))
{

com.ofss.fc.app.me.service.referencedata.service.json.client.Refer
enceObjectApplicationServiceJSONClient jsonStub = new
com.ofss.fc.app.me.service.referencedata.service.json.client.Refer
enceObjectApplicationServiceJSONClient(jsonServiceUrl);
returnObj = jsonStub.addReferenceObject(sessionContext,
referenceObjectDTO);
} else if ("LOCAL".equals(protocol) && "APP".equals
(hostApplicationLayer)) {
try {
Object[] args = new Object[] { sessionContext, referenceObjectDTO
};
String stringToCompleteClassName =
"com.ofss.fc.app.me.service.referencedata.ReferenceObjectApplicati
onService";
Object obj = ReflectionHelper.getInstance().getClass
(stringToCompleteClassName).newInstance();

5 OBP Proxy Extension | 71

returnObj = (TransactionStatus) ReflectionHelper.getInstance
().invokeMethod(obj, "addReferenceObject", args);
} catch (Exception e) {
throw new ServiceException(SERVICE_NOT_AVAILABLE, e);
}
} else {
logger.log(Level.SEVERE, THIS_COMPONENT_NAME, "No valid protocol
and hostApplicationLayer combination found");
logger.log(Level.SEVERE, THIS_COMPONENT_NAME, SERVICE_NOT_
AVAILABLE);
}
this.populateTransactionStatus(returnObj);
} catch (IOException e) {
logger.log(Level.SEVERE, THIS_COMPONENT_NAME, e);
throw new ServiceException(SERVICE_NOT_AVAILABLE, e);
}
if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE, THIS_COMPONENT_NAME + " addReferenceObject()
Exit");
logger.log(Level.FINE, logAppServiceMessage(returnObj));
}
return returnObj;
}

Sample Existing Code will be changed to:
public TransactionStatus addReferenceObject(SessionContext
sessionContext, ReferenceObjectDTO referenceObjectDTO) throws
FatalException, ServiceException {

if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE, THIS_COMPONENT_NAME + " addReferenceObject()
Entry");
logger.log(Level.FINE, logAppServiceMessage(sessionContext));
logger.log(Level.FINE, logAppServiceMessage(referenceObjectDTO));
}
TransactionStatus returnObj = null;
try {
if (isProxyExtended(this)) {
Serializable overriddenResponse = invokeExtendedProxy(this,
sessionContext, "addReferenceObject", referenceObjectDTO);
if (overriddenResponse != null) {
if (overriddenResponse instanceof TransactionStatus) {
return (TransactionStatus) overriddenResponse;
} else {
logger.log(Level.SEVERE,
THIS_COMPONENT_NAME,

72 | Oracle Banking Enterprise Originations Host Extensibility Guide

"Invalid response returned from the overridden proxy. Response
expected is an instance of TransactionStatus.");
throw new ServiceException(BranchErrorConstants.FC_OVR_RESP_INV);
}
} else {
logger.log(Level.SEVERE,
THIS_COMPONENT_NAME,
"Null response returned from the overridden proxy. Response
expected is an instance of TransactionStatus.");
throw new ServiceException(BranchErrorConstants.FC_OVR_RESP_NULL);
}
} else {
this.populateDictionaryData(referenceObjectDTO);
if ("JSON".equals(protocol) && "APP".equals(hostApplicationLayer))
{

com.ofss.fc.app.me.service.referencedata.service.json.client.Refer
enceObjectApplicationServiceJSONClient jsonStub = new
com.ofss.fc.app.me.service.referencedata.service.json.client.Refer
enceObjectApplicationServiceJSONClient(jsonServiceUrl);
returnObj = jsonStub.addReferenceObject(sessionContext,
referenceObjectDTO);
} else if ("LOCAL".equals(protocol) && "APP".equals
(hostApplicationLayer)) {
try {
Object[] args = new Object[] { sessionContext, referenceObjectDTO
};
String stringToCompleteClassName =
"com.ofss.fc.app.me.service.referencedata.ReferenceObjectApplicati
onService";
Object obj = ReflectionHelper.getInstance().getClass
(stringToCompleteClassName).newInstance();
returnObj = (TransactionStatus) ReflectionHelper.getInstance
().invokeMethod(obj, "addReferenceObject", args);
} catch (Exception e) {
throw new ServiceException(SERVICE_NOT_AVAILABLE, e);
}
} else {
logger.log(Level.SEVERE, THIS_COMPONENT_NAME, "No valid protocol
and hostApplicationLayer combination found");
logger.log(Level.SEVERE, THIS_COMPONENT_NAME, SERVICE_NOT_
AVAILABLE);
}
this.populateTransactionStatus(returnObj);
}
} catch (Throwable e) {
logger.log(Level.SEVERE, THIS_COMPONENT_NAME, e);
throw new ServiceException(SERVICE_NOT_AVAILABLE, e);
}

5 OBP Proxy Extension | 73

if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE, THIS_COMPONENT_NAME + " addReferenceObject()
Exit");
logger.log(Level.FINE, logAppServiceMessage(returnObj));
}
return returnObj;
}

74 | Oracle Banking Enterprise Originations Host Extensibility Guide

6 OBP Application Adapters

An adapter, by definition, helps the interfacing or integrating components to adapt. In software it represents a
coding discipline that helps two different modules or systems to communicate with each other and helps the
consuming side to adapt to any incompatibility of the invoked interface to work together. Incompatibility could
be in the form of input data elements which the consumer does not have and hence might require defaulting or
the invoked interface might be a third party interface with a different message format requiring message
translation. Such functions, which do not form part of the consumer functionality, can be implemented in the
adapter layer.

In OBP, adapters are used for the above purposes as well as to achieve cleaner build time separation of
different functional product processor modules. Hence, when Loan Module needs to invoke services of Party
Module or Demand Deposit module then an adapter class owned by the Loans module will be used to ensure
that functions such as defaulting of values, mocking of an interface, and so on, are implemented in the
adapter layer thereby relieving the core module functionality from getting corrupted.

The design of the adapter layer is based on the Separated Interface design pattern and the access
mechanism of the adapters by modules is implemented using an Abstract Factory design pattern. The adapter
implementation is explained in the sections below as it exists in OBP.

6.1 Adapter Implementation Architecture
This section provides a detailed explanation of the adapter implementation architecture.

6.1.1 Package Diagram
The components of adapter implementation in OBP are structurally placed in separate projects to enable OBP
to achieve build time independence between functional modules of the product. The way this is achieved is
detailed in the table below and depicted with package diagram, class diagrams and an example usage
mechanism.

S
r. Project Name Description Example

1 com.ofss.fc.app.xface

DTO project.
Holds all
DTOs that are
used in the
module
application
services
request and
response
DTOs.

2 com.ofss.fc.app.adapter.internal.int
erface

Package
contains
adapter
interfaces for

com.ofss.fc.app.adapter.ep.IEventProcessing
Adapter
Abstract Factory
com.ofss.fc.app.adapter.AdapterFactory

Table 6–1 Components of Adapter Implementation

6 OBP Application Adapters | 75

6.1 Adapter Implementation Architecture

S
r. Project Name Description Example

all modules
and the
abstract
factory
implementatio
n (i.e. factory
of adapter
factories).

3 com.ofss.fc.app.adapter.impl

This project
has the
implementati
on of adapter
interfaces and
corresponding
adapter
factories.

com.ofss.fc.app.adapter.ep.
impl.EventProcessingAdapter
com.ofss.fc.app.adapter.ep.
impl.EventProcessingAdapterFactory

Hence, if Loans module (that is, com.ofss.fc.module.loan) and Party module (that is,
com.ofss.fc.module.party) are any two modules that need to communicate, the package dependency diagram
is depicted below:

Figure 6–1 Package Diagram

The dependencies among the packages as shown in the diagram are:

76 | Oracle Banking Enterprise Originations Host Extensibility Guide

6.1 Adapter Implementation Architecture

n Package com.ofss.fc.app.adapter.internal.interface only depends on DTO’s.

n Any module package depends on the Adapter interfaces and DTO’s to communicate with another
module.

n Package com.ofss.fc.app.adapter.impl depends on all the packages.

In this manner, the loans module is developed into a functional module which is structurally modular and
independent in terms of development and build from the party module and vice versa. Same is true for all
modules developed in OBP.

6.1.2 Adapter Mechanism Class Diagram
An Application Service in calling module calls the getAdapterFactory() method of class
AdapterFactoryConfigurator which returns an instance of an implementation of the abstract class
AdapterFactory. The class of instance is decided by the string parameter passed to the method.

The getAdapter() method in the AdapterFactory returns an adapter instance. The class of instance is decided
by the string parameter passed to the method.

The Application Service then uses this adapter instance to access any data from an application service within
another module.

Figure 6–2 Adapter Mechanism Class Diagram

6.1.3 Adapter Mechanism Sequence Diagram
A method in an application service gets an instance of a desired adapter factory by calling getAdapterFactory
() method of AdapterFactoryConfigurator class. The instance of the adapter factory obtained is used to call
getAdapter() method to get an instance of the adapter. This adapter instance has all the methods to
communicate to the service in another module.

6 OBP Application Adapters | 77

6.2 Examples of Adapter Implementation

Figure 6–3 Adapter Mechanism Sequence Diagram

6.2 Examples of Adapter Implementation
This section provides multiple adapter usage scenarios with code snippets. The section also has examples
describing the steps for implementing custom adapters and their factory implementation. The same
mechanism applies to all adapters which are provided by different modules in OBP. The adapter factory
additionally supports mocking of the adapter. OBP depends on the DI feature function supported by Jmock to
enable mocking of adapters.

The custom adapter, adapter factory and corresponding constants are depicted in code samples below:

6.2.1 Example – EventProcessingAdapter
Code snippet to invoke a method processActivityEvents() in alerts module from a different module:

… Constants definition …
public static final String EVENT_PROCESSING = "EVENT_PROCESSING";
public static final String MODULE_TO_ACTIVITY =
"ModuleToActivityAdapter";
… Adapter usage …
com.ofss.fc.app.adapter.IAdapterFactory adapterFactory =
AdapterFactoryConfigurator.getInstance().getAdapterFactory
(ModuleConstant.EVENT_PROCESSING);
IEventProcessingAdapter adapter = (IEventProcessingAdapter)
adapterFactory.getAdapter (EventProcessingAdapterConstant.MODULE_
TO_ACTIVITY);
adapter.processActivityEvents();

78 | Oracle Banking Enterprise Originations Host Extensibility Guide

6.2 Examples of Adapter Implementation

The parameters passed in the getAdapterFactory() and getAdapter()methods are String constants denoting
instance of which class has to be returned. These string values are maintained as constants. In the example
given below, the string constant is created in a constants file (in this example, it the constants file is
ModuleConstant).

public static final String EVENT_PROCESSING = "EVENT_PROCESSING";

An entry is made in AdapterFactories.properties corresponding to the string constant. This entry specifies the
adapter factory class corresponding to the above constant which should be instantiated and returned. The
adapter factory has the intelligence of all adapters along with adapter methods which are mocked as and
where required.

EVENT_
PROCESSING=com.ofss.fc.app.adapter.impl.ep.EventProcessingAdapterF
actory

While implementing the adapter factory, developers can choose to have a separate factory specific constants
on the basis of which to manage multiple adapters from the same factory. Alternatively, developers can
choose to create an adapter factory each for an adapter and its interface. The constants form the basis for
instantiating and returning of respective adapters by the factory.

The respective adapter constant and corresponding usage in the getAdaptermethod of the adapter factory
class is shown in a sample below.

… Adapter Factory Method …
public IEventProcessingAdapter getAdapter(String adapter,
NameValuePair[] nameValues) {
EventProcessingAdapter eventProcessingAdapter = null;
If (adapter.equalsIgnoreCase(EventProcessingAdapterConstant.MODULE_
TO_ACTIVITY)) {
eventProcessingAdapter = new EventProcessingAdapter();
}
return eventProcessingAdapter;
}

The adapter implementation (that is, EventProcessingAdapter) can have implementation of the methods
defined in the adapter interface it implements. This implementation is typically delegated calls to services of
the module which is invoked by the consuming module. For example, theEventProcessingAdapter can
implement the method processActivityEvents().

public void processActivityEvents(ApplicationContext
applicationContext, HashMap<String, String> activityMap) throws
FatalException {
EventProcessorApplicationService eventApplicationService =
new EventProcessorApplicationService();
eventApplicationService.processActivityEvents
(AdapterContextHelper.fetchSessionContext(), key, activityDataId);
}

6 OBP Application Adapters | 79

6.2 Examples of Adapter Implementation

6.2.2 Example – DispatchAdapter
Similar to the implementation of EventProcessingAdapter, an adapter implementation is provided by product
for dispatch of an SMS alert. This adapter will always get customized during implementation depending on the
SMS gateway used by the customer at their end.

The code snippet to invoke a method dispatchSMS() in alerts module by using the adapter interface is
depicted below.

… Constants definition …
public static final String EVENT_PROCESSING_DISPATCH = "EVENT_
PROCESSING_DISPATCH";
public static final String EP_TO_DISPATCH = "EpToDispatchAdapter";

… Adapter usage …
com.ofss.fc.app.adapter.IAdapterFactory adapterFactory =
AdapterFactoryConfigurator.getInstance().getAdapterFactory
(ModuleConstant. EVENT_PROCESSING_DISPATCH);

adapter = (IDispatchAdapter) adapterFactory.getAdapter
(EventProcessingAdapterConstant.EP_TO_DISPATCH);
adapter.dispatchSMS();

An entry inAdapterFactories.properties corresponding to theDispatchAdapterFactory would look as below.
This entry specifies the adapter factory class corresponding to the above constant which should be
instantiated and returned.

EVENT_PROCESSING_
DISPATCH=com.ofss.fc.app.adapter.impl.ep.DispatchAdapterFactory

The adapterDispatchAdapter is used in the alerts module to dispatch a message to an SMS destination
endpoint. It has a method called dispatchSMS(…) and the default implementation is currently to write the
SMS text generated as part of alert processing into a file called SMS.txt.

public boolean dispatchSMS(String recipientId, String
dispatchMessage) throws FatalException {
return writeToFile(recipientId, dispatchMessage);
}

The customization developer can override this method by supplying a customized implementation of the
adapter. Such custom implementation of the dispatchSMS(…)method invokes the APIs provided by the
gateway client. A sample implementation which overrides the default implementation of dispatchSMS could
look like the one below:

public boolean dispatchSMS(String recipientId, String
dispatchMessage) throws FatalException {
NewGatewayAPI newGateway = new NewGatewayAPI();
newGateway.sendMessage(recipientId,dispatchMessage);
}

80 | Oracle Banking Enterprise Originations Host Extensibility Guide

6.2 Examples of Adapter Implementation

6.2.3 Example – Adapter Implementation Using Groovy
Groovy adapter implementation acts as a wrapper on the product. Adapter implementation in OBP is used to
make service call from one module to another module.

Existing product adapter will be overridden by the new custom made adapter for Groovy. This new Groovy
adapter would contain groovy implementation methods which might call groovy files internally to perform
desired functionality.

For example, for CreditCardAdapter, the following steps would have to be followed for implementation of a
custom Groovy Adapter.

Develop aCustomGroovyAdapter andCustomGroovyAdapterFactory. As a guideline, the custom adapter
should extend the existing adapter and override the methods which need to be replaced with the new
functionality. Given below are examples of customizing the adapters which are detailed above.

The respective adapter constant and corresponding usage in the getAdapter method of the adapter factory
class is shown in a sample below.

Figure 6–4 Adapter Implementation Using Groovy

OBP gives an adapter implementation for CreditCard. The adapter implements to the interface shown below.
The interface method inquireCreditCardDetailsForCardNumberwould be overridden by the customization
developer while providing the actual implementation of the desired functionality.

6 OBP Application Adapters | 81

6.2 Examples of Adapter Implementation

Figure 6–5 Credit Card Adapter Implementation Using Groovy

Assume the same are named as GroovyCreditCardAdapterwhich conforms to the interface of the product
Credit Card adapter andGroovyCreditCardAdapterFactory which would return an instance of the custom
adapter. As a guideline, the custom adapter should extend the existing adapter and override the methods
which need to be replaced with new functionality.

The entry inAdapterFactories.properties corresponding to theCreditCardAdapterFactory would have to be
modified to instantiate and return theGroovyCreditCardAdapterFactory. In preferences.xml, the custom
GroovyCreditCardAdapterFactory has overridden theAdapterFactories.

Figure 6–6 Modify AdapterFactories.properties for GroovyCreditCardAdapterFactory

In preferences.xml, the following has been defined for the Custom GroovyCreditCardAdapterFactory.

Figure 6–7 Modify Preferences.xml for GroovyCreditCardAdapterFactory

82 | Oracle Banking Enterprise Originations Host Extensibility Guide

6.3 Customizing Existing Adapters

Insert a record in table flx_fw_config_all_b to identify a Customized Domain Object in the following manner,
where the fully qualified name of the groovy adapter factory can be specified.

Insert into FLX_FW_CONFIG_ALL_B(CATEGORY_ID,PROP_ID,PROP_
VALUE,PROP_COMMENTS,OBJECT_VERSION_NUMBER,CREATED_BY,CREATION_
DATE,LAST_UPDATED_BY,LAST_UPDATED_DATE,OBJECT_STATUS_FLAG,FACTORY_
SHIPPED_FLAG) values
('GroovyAdapterFactory','Groovy','com.ofss.fc.groovy.origination.G
roovyCreditCardAdapterFactory','Class for deriving
groovy',1,'ofssuser',SYSDATE,'ofssuser',SYSDATE,'A','Y');

The implementation should be packaged and added as part of custom library which the application is referring
to and the groovy library will be added in the classpath of the server as below, which will be taken care by
deployment team.

Figure 6–8 Add Groovy Library to Classpath

6.3 Customizing Existing Adapters
If an added functionality or replacement functionality is required for an existing adapter or existing method in
an adapter, the customization developer has to develop a new adapter and corresponding adapter factory and
override the method in a new custom adapter class. The custom adapter would have to override and
implement the methods which need changes.

6.3.1 Custom Adapter Example – DispatchAdapter
The example of DispatchAdapter is further explained here on how to customize the same. This is followed up
by an example of customizing a party KYC status check adapter for further clarity and reference.

Depending on the client the SMS gateway they use and thus the corresponding interface to communicate with
the gateway will differ. Also, OBP by default does not support interfacing with any SMS gateway. Hence,
customization of Dispatch Adapter is essential. The following steps can be followed for implementation of a
custom DispatchAdapter.

Develop aCustomDispatchAdapter andCustomDispatchAdapterFactory. As a guideline, the custom adapter
should extend the existing adapter and override the methods which need to be replaced with the new
functionality. Given below are examples of customizing the adapters which are detailed above.

The custom adapter, adapter factory and corresponding constant are depicted as a sample below:

… CustomDispatchAdapterFactory Method …
public IDispatchAdapter getAdapter(String adapter, NameValuePair[]
nameValues) {
IDispatchAdapter adapter = null;

6 OBP Application Adapters | 83

6.3 Customizing Existing Adapters

If (adapter.equalsIgnoreCase(EventProcessingAdapterConstant.EP_TO_
DISPATCH)) {
adapter = new CustomDispatchAdapter();
}
return adapter;
}

The custom adapter implementation (that is, CustomDispatchAdapter) has the implementation of the
methods defined in the adapter interface it implements. For example, theCustomDispatchAdapterwould
implement the method dispatchSMS() to reflect the desired functionality.

The entry inAdapterFactories.properties corresponding to theDispatchAdapterFactory can be modified to
instantiate and return theCustomDispatchAdapterFactory. The same is shown below.

Original entry
EVENT_PROCESSING_
DISPATCH=com.ofss.fc.app.adapter.impl.ep.DispatchAdapterFactory
Changed entry
EVENT_PROCESSING_
DISPATCH=com.ofss.fc.app.adapter.impl.ep.CustomDispatchAdapterFact
ory

This changed entry specifies the custom adapter factory class corresponding to the constant which is referred
to in the product. The new entry shall ensure that theAbstractFactory instantiates and returns an instance of
CustomDispatchAdapterFactory instead of the original DispatchAdapterFactory supplied with product.

6.3.2 Custom Adapter Example – PartyKYCCheckAdapter
OBP ships an adapter implementation for KYC check of a party. The adapter implements to the interface
shown below. The interface method performOnlineKYCCheck can be overridden by the customization
developer while supplying the actual implementation of the desired functionality.

public interface IPartyKYCCheckAdapter {
@External(name = "KYC", info = "Perform Online KYC Check")
public abstract KYCHistoryDTO performOnlineKYCCheck(KYCHistoryDTO
kycCheckDTO) throws FatalException;
}

This adapter is integrated in product and the default implementation of the KYC check returns a successful
KYC check as shown below. This is depicted in the code snippets below.

84 | Oracle Banking Enterprise Originations Host Extensibility Guide

6.3 Customizing Existing Adapters

Figure 6–9 Party KYC Status Check Adapter Interface

Figure 6–10 Default Implementation of I Party KYC Check Adapter Interface

… PartyKYCCheckAdapter performOnlineKYCCheck Method …
public KYCHistoryDTO performOnlineKYCCheck(KYCHistoryDTO
kycCheckDTO) throws FatalException {
kycCheckDTO.getAutomaticKYCDetails().setKycStatus
(KYCStatus.CONFIRMED);
kycCheckDTO.getAutomaticKYCDetails().setKycProcessStage
(KYCProcessStage.Complete);
kycCheckDTO.getAutomaticKYCDetails().setKycComments("KYC Status
maintained by Party");
…

6 OBP Application Adapters | 85

6.3 Customizing Existing Adapters

kycCheckDTO.getAutomaticKYCDetails().setKycDate(postingDate);
return kycCheckDTO;
}

In actual product implemented in production at the customer site, this is replaced with an online KYC status
check against a third-party system or the appropriate KYC agency external system interface. Hence, this
would always be a customization point during an implementation.

Depending on the client the KYC system uses, the corresponding interface to communicate will differ. Hence,
customization of the party KYC status check adapter implementation is essential. The following steps would
have to be followed for implementation of a custom PartyKYCStatusCheckAdapter.

The implementation of getAdaptermethod of KYC adapter factory with mocking support is given in the
sample below for reference.

Figure 6–11 KYC Adapter Factory with Mocking Support

… Constants definition …
public static final String PARTY_KYC_ADAPTER_FACTORY = "PARTY_KYC_
ADAPTER_FACTORY";
public static final String PARTY_KYC_ADAPTER =
"PartyKYCCheckAdapter";
… PartyKYCStatusCheckAdapterFactory getAdapter Method …
if (AdapterConstants.PARTY_KYC_ADAPTER.equals(adapter)) {
if (!isMockEnabled) {
return new PartyKYCCheckAdapter();
else {
// 1. Creation of Mockery Object
Mockery context = new Mockery();
final IPartyKYCCheckAdapter mockPartyKYCCheckAdapter = context.mock
(IPartyKYCCheckAdapter.class);
try {

86 | Oracle Banking Enterprise Originations Host Extensibility Guide

6.3 Customizing Existing Adapters

context.checking(new Expectations() {
{
allowing(mockPartyKYCCheckAdapter).performOnlineKYCCheck(with(any
(KYCHistoryDTO.class)));
final KYCHistoryDTO kycCheckDTO = new KYCHistoryDTO();
KYCDetailsDTO automaticKYCDetails = new KYCDetailsDTO();
automaticKYCDetails.setKycStatus(KYCStatus.CONFIRMED);
automaticKYCDetails.setKycProcessStage(KYCProcessStage.Complete);
automaticKYCDetails.setKycComments("KYC Status maintained by
Party");
String bankCode = (String) FCRThreadAttribute.get
(FCRThreadAttribute.USER_BANK);
Date postingDate = new CoreService().fetchBankDates
(bankCode).getCurrentDate();
automaticKYCDetails.setKycDate(postingDate);
kycCheckDTO.setAutomaticKYCDetails(automaticKYCDetails);
will(returnValue(kycCheckDTO));
}
);
} catch (Exception e) {
throw new
MockAdapterException(InfraErrorConstants.MOCK_METHOD_NOT_CONFGD,
e, PartyKYCCheckAdapterFactory.class.getName());
}
return mockPartyKYCCheckAdapter;
}
}

To override the default implementation of the KYC check, the customization developer has to implement a
custom adapter and its corresponding adapter factory. Assume the same are named as
CustomPartyKYCStatusCheckAdapterwhich conforms to the interface of the product KYC check adapter
andCustomPartyKYCStatusCheckAdapterFactory which would return an instance of the custom adapter. As
a guideline, the custom adapter should extend the existing adapter and override the methods which need to be
replaced with new functionality.

Therefore, CustomPartyKYCStatusCheckAdapter can override and provide an actual implementation of the
methods defined in the default product adapter interface. For example, the adapter implements the method
performOnlineKYCCheck() to reflect the desired functionality.

The entry inAdapterFactories.properties corresponding to thePartyKYCCheckAdapterFactory can to be
modified to instantiate and return theCustomPartyKYCCheckAdapterFactory. The same is shown below.

Original entry
PARTY_KYC_ADAPTER_
FACTORY=com.ofss.fc.app.adapter.impl.party.PartyKYCCheckAdapterFac
tory
Changed entry
PARTY_KYC_ADAPTER_FACTORY=
com.ofss.fc.app.adapter.impl.party.CustomPartyKYCCheckAdapterFacto
ry

6 OBP Application Adapters | 87

6.3 Customizing Existing Adapters

This changed entry specifies the custom adapter factory class corresponding to the constant which is referred
to in the product. The new entry shall ensure that theAbstractFactory instantiates and returns an instance of
CustomPartyKYCCheckAdapterFactory instead of the original PartyKYCCheckAdapterFactory supplied by
the product.

88 | Oracle Banking Enterprise Originations Host Extensibility Guide

7 Business Policy Extension

This chapter describes how custom business policies are implemented in OBP for overriding business
validations. Business policy extensions are useful in overriding or extending the existing validations.

Figure 7–1 Business Policy Extension

The sequence diagram above shows a generic view of base implementation of business policy. Wherever
business validations are required, application service invokes createPolicyInstance() methods in the
business policy factory of the corresponding module. This business policy factory extends to
AbstractBusinessPolicyFactory class which is maintained at framework level. CreatePolicyInstance()
method in the business policy factory class invokes getBusinessPolicyInstance() method to look for any
custom business policy class present in the database. If there is no custom class present, it creates an
instance of base business policy class and return it to the invoking application service. Then application
service invokes the validate() method in AbstractBusinessPolicy class which in turn invokes validatepolicy()
method implemented in base business policy class. All the validation logic is written in this method and it
throws validation error if any of the validation conditions fails.

7.1 Base Implementation of Business Policy
The sequence diagram, Figure 7–1, shows a generic view of base implementation of business policy.

For more clarification let's take an example of creditCardDetailsBusinessPolicy implementation. Following
are the code snippets of different key methods:

7 Business Policy Extension | 89

7.2 Extending Business Policy

n validate() method in AbstractBusinessPolicy.java

Figure 7–2 validate() method in AbstractBusinessPolicy.java

n validatePolicy() in creditCardBusinessPolicy.java

Figure 7–3 validatePolicy() in creditCardBusinessPolicy.java

7.2 Extending Business Policy
Custom implementation of business policy is achieved by defining a preference for customBusinessPolicy in
preferences.xml which represents a query to the FLX_FW_CONFIG_ALL_B table in the database. To

90 | Oracle Banking Enterprise Originations Host Extensibility Guide

7.3 Configuration

override a base business policy, class name of the custom business policy with the policy code is inserted
into the table. As a guideline, the custom business class should extend the product base business policy, to
inherit the product base implementation. Base code already handles the fetching of custom class, if any, from
the table. If customization of a policy is not required then query returns null and base business policy is
implemented.

7.3 Configuration
For custom business policy implementation following configuration steps are required to be followed:

1. Add a preference for custom business policy in preferences.xml.

Figure 7–4 Add a preference for custom business policy in preferences.xml

2. Add an entry in FLX_FW_CONFIG_ALL_B table in database with custom class name and policy code.

INSERT INTO FLX_FW_CONFIG_ALL_B (PROP_ID,CATEGORY_ID,PROP_
VALUE,FACTORY_SHIPPED_FLAG,PROP_COMMENTS,SUMMARY_TEXT,CREATED_
BY,CREATION_DATE,LAST_UPDATED_BY,LAST_UPDATED_DATE,OBJECT_
STATUS_FLAG,OBJECT_VERSION_NUMBER) VALUES ('FC_CC_BP_
001','CustomBusinessPolicy','com.ofss.fc.module.originationGr
oovy.CreditCardDetailsBusinessPolicyGroovy','Y','This is
accessed from
AbstractBusinessPolicyFactory.getCustomBusinessPolicyNameTDS'
,'','ofssuser',to_date('09/05/2016 11:25:30', 'dd/mm/rrrr
hh:mi:ss'),'ofssuser',to_date('09/05/2016 11:25:30',
'dd/mm/rrrr hh:mi:ss'),'A',1);

7.4 Extensions Using Groovy
Groovy is a lightweight, dynamically typed object-oriented programming language. It has got similarities with
java and can run on jvm platform. Groovy class provides the functionalities for interacting with a java program
so can be efficiently used as extensions for customization purpose.

In addition to the configurations mentioned above, add the groovy-all-2.3.10.jar in the classpath of weblogic
server in setDomain.sh file, which will be done by deployment team. No other specific configuration is
needed.

Following is the snippet of a groovy custom business policy class implemented for creditCardDetails
validations:

7 Business Policy Extension | 91

7.4 Extensions Using Groovy

Figure 7–5 Extensions using Groovy

92 | Oracle Banking Enterprise Originations Host Extensibility Guide

8 Batch Framework Extensions

Most of the enterprise applications require bulk processing of records to perform business operations in real-
time environments. These business operations include complex processing of large volumes of information
that are most efficiently processed with minimal or no user interaction. Such operations would typically
include time-based events (for example, month-end calculations, notices or correspondence), periodic
application of complex business rules processed repetitively across very large data sets (for example, rate
adjustments). All such scenarios form a part of batch processing. Thus, batch processing is used to process
billions of records for enterprise applications.

There are few primary categories in OBP Batch Processes:

n Beginning of Day (BOD)

n Cut-off

n End of Day (EOD)

n Internal EOD

n Statement Generation

n Customer Communication

Additional categories can also be configured as per the requirement.

8.1 Typical Business Day in OBP
The following graphic describes a typical business day in OBP:

8 Batch Framework Extensions | 93

8.2 Overview of Categories

Figure 8–1 Business Day in OBP

8.2 Overview of Categories
This topic describes the categories in OBP Batch Processes.

8.2.1 Beginning of Day (BOD)
The activities for a new day of the bank / branch begin with the BOD (beginning of day). This is a batch
process which executes a group of shells (programs) which are required to be performed before the normal
day-to-day operations at the branch can be started. The BOD typically includes

n TD Maturity and Interest Processing

n Standing instructions execution (Based on setup)

n Loan Charging, Drawdown and Auto-Disbursement

n Value date processing of cheques (Based on the setup)

n Reports Generation

8.2.2 Cut-off
Cut-off is a process that sets the trigger for modules to start logging transactions with a new date.

It also marks cut-off for the channel transactions.

94 | Oracle Banking Enterprise Originations Host Extensibility Guide

8.3 Batch Framework Architecture

8.2.3 End of Day (EOD)
Once all the operations for the current working date of the branch are completed and all the transactions are
posted the Branch EOD batch is started. This batch executes a group of shells (programs) which are required
to be performed before the Business Date of the branch is changed to the next working date. It marks the end
of a business day. The EOD typically includes:

n DDA Sweep-Out Instruction

n Loan Rate Change

n Term Deposit Lien Expiry and Interest Capitalization

n DDA Balance Change, Rate Change, Interest Capitalization and Settlement

n Account and Party Asset Classification

n Loan Interest Computation

n Accounting Verification

8.2.4 Internal EOD
This category performs all the activities which do not affect the customer account but are related to bank
internal processing. Internal EOD typically includes:

n Interest Accrual and Compounding

n Deferred Ledger Balance Update

n Balance Period Creation

n Financial Closure

8.2.5 Statement Generation
This category performs different statement generation activities on the monthly or yearly basis. It typically
includes:

n Periodic PL balance history Generation

n CASA Statement Generation

n Loan Statement Generation

n TD Statement Generation

8.2.6 Customer Communication
This category performs different communications which needs to be done with the customer on the regular
basis. It typically includes:

n Regular Account Balance Notification On Specified Date

8.3 Batch Framework Architecture
This section describes the architecture of the Batch Framework.

8 Batch Framework Extensions | 95

8.3 Batch Framework Architecture

8.3.1 Static View
The static view of batch framework shows the architecturally significant classes included in the batch
framework being developed. It is in line with the overall design and development guidelines and principles.
This section shows the class diagrams representing the static model of the batch framework emphasizing the
static structure of the system using objects, attributes and relationships.

Class Diagram

The following diagram depict details about the different classes of the code which are involved in the batch
execution.

96 | Oracle Banking Enterprise Originations Host Extensibility Guide

8.3 Batch Framework Architecture

Figure 8–2 Batch Framework Architecture - Static View

8.3.2 Dynamic View
This section emphasizes the dynamic behavior of the system by showing collaborations among objects and
changes to the internal states of objects.

Sequence Diagram

8 Batch Framework Extensions | 97

8.3 Batch Framework Architecture

The following diagram depicts the sequence diagram for Batch framework. It provides details about the flow of
control during the batch execution.

Figure 8–3 Dynamic View Sequence Diagram

State Diagram of a Shell

When the end of day batch starts, every shell is reset to Not Started. During the course of the batch, the shell
status will change till the shell is completed. The transitions of shell execution are explained in the state
diagram below:

98 | Oracle Banking Enterprise Originations Host Extensibility Guide

8.4 Batch Framework Components

Figure 8–4 State Diagram of a Shell

8.4 Batch Framework Components
This section describes the batch framework components.

8.4.1 Category Components
This section describes the category components.

CategoryListenerMDB

This MDB listens to the FCBBatchRequestQ and delegate to CategoryHelper for further processing.

CategoryHelper

This class starts or restarts a category depending upon the request received.

8 Batch Framework Extensions | 99

8.4 Batch Framework Components

It will validate the input xml Request, validate the prerequisites for starting/restarting a category, get the list of
shells that can be initiated on a category start/shell completion, prepare the Batch XML Message for each of
the shell and send a message to FCBBatchShellQ for each Shell to be started.

It also services requests initiation of the next shell after a shell has been successfully completed.

8.4.2 Shell Components
This section describes the shell components.

ShellListenerMDB

This MDB listens on ShellRequestQ and delegate to ShellProcessHelper for processing.

ShellProcessHelper

This class validates the input request and calls appropriate batch handler to start the shell. It will call:

n BatchFrameworkShellHelper for non-report Java Bean Based Shell

n ProcedureShellHelper for Procedure based shell

n BatchReportShellBean for report shells

n BatchReportRestartShellBean for report epilogue shells

After successful completion of shell, it sends an ’InitiateNext’ request to the CategoryHelper to initiate
subsequent shells. If the shell is aborted, this class will mark the shell as aborted.

ShellRootHelper

This is the base class which is required for each shell processing. It Implements the IBatchHandler Interface.
All the batch handlers extend this class.

This class contains the common methods which need to invoked for processing each shell for example,
method to parse the request, methods used to acquire and release lock for shell, method to initiate the shell
and mark the shell as complete upon successful completion.

BatchFrameworkShellHelper

This SSB extends ShellRootHelper. It is responsible for executing non report Java Bean based shells. This
class will validate the process date of the request, prepare a BatchContext entity encapsulating the batch run
details and call BatchJobHandler to run the shell.

BatchJobHandler

This class is responsible for putting the stream requests in queue. It will get the Batch Processes (1 Batch
Process per stream) by calling BatchProcessManager and post them to the Stream Queue.

After posting the stream requests, it will start polling on the status of the streams till either all streams are
completed or any one of the streams is aborted. If the streams are completed, it will return ’Success’ as the
status else it will return the status as ’Failure’.

BatchProcessManager

This component acts as a manager for the complete batch process. The functionalities include finding the
pending batch processes and creating batch processes and returning the list of batch processes to be
initiated.

If the shell is being restarted, this class will fetch the aborted batch processes, reset them and return list of
reset Batch Processes to be re-initiated.

100 | Oracle Banking Enterprise Originations Host Extensibility Guide

8.4 Batch Framework Components

If the shell is being started, it will call BatchJobHelper to populate the driver table and create the batch
processes and return the list of batch processes to be initiated.

BatchJobHelper

This class is responsible for populating the driver table and creating the Batch Processes.

ProcedureShellHelper

This class is used to process DB procedure based shells. This class will fetch the procedure to be executed
from the ’flx_batch_job_shell_master’ table and execute it.

BatchReportShellBean

This class is responsible initiating the generation of reports. It will call ReportJobRequestor to fetch the
reports to be generated, prepare the generation request and post the requests to the Report Queue.

After the successful posting of requests, the report shell will be marked as complete. The report generation
will be done in parallel to the execution of subsequent shells.

BatchReportRestartShellBean

This class is used for the epilogue shell in each category which has reports generation.

This class will check whether all the reports have been generated or not. This class will call
ReportJobRequestor which will poll on the status of the reports till all the reports are completed or aborted.

If the aborted reports are to be regenerated, it will also post the messages to regenerate aborted reports.

8.4.3 Stream Components
This section describes the stream components.

StreamListenerMDB

This MDB is responsible for listening to the stream queue. It delegates the processing to
StreamProcessHelper.

StreamProcessHelper

This class is responsible for starting the batch process. It calls RecoverableBatchProcess to start the
process.

BatchProcess

This component is the base class for processing the batch process. The StreamProcessHelper calls this
class for starting the batch process. This class will initialize the BatchShellResult, clear the
StaticCacheRegistry (if the BatchProcess is the first BatchProcess of a category), process the
BatchProcess, retry the processing of the BatchProcess (if the earlier failure was due to StaleState or
PKDuplication) and finalize the BatchShellResult status depending on success/failure.

The call to process a batch request is routed through this class to the subclass.

RecoverableBatchProcess

This component processes the batch data and inherits the BatchProcess class. This class will process all the
records in the sequence number range specified in the BatchShellResult.

This class will fetch the records from the driver table and process them sequentially.

To execute each record, it will call service method of the service class stored in the BatchShellDetails table
using reflection. If there is any exception, it will call the exception handler method of the service class if the
service class implements the IBatchExceptionHandler interface.

8 Batch Framework Extensions | 101

8.4 Batch Framework Components

It will commit the transaction at the end of commit size. If all the records are executed successfully, the
stream is marked as complete. If any record fails, the stream is marked as aborted.

Recoverable Batch Process can handle the failure of a record in the following ways depending upon the set
up.

n Recoverable Batch Process with Recovery Mode ON: When a record fails, the previous records in the
commit size will be committed and marked as success, the failed record will be marked as failed and
the execution of batch process resumes from the record after the failed record. Hence in this mode all
the successful records are committed and the failed records are marked as failed.

n Recoverable Batch Process with Recovery Mode OFF: In this mode, when a record fails the earlier
records in the commit size are marked as skipped for the current run, the failed record is marked as
failed and execution of batch process resumes from the record after the failed record.

Simple Batch Process

While executing the shell as a Simple Batch Process, the stream will be executed till the first failed record.
When a record fails, the previous records in the commit size will be committed and the shell will be aborted.
The records after the failed record will be skipped in the current run.

SimpleBatchProcess class is no longer used

The functionality of SimpleBatchProcess is executed through RecoverableBatchProcess by specifying the
FLG_PROCESS_TYPE as "SBP" in the flx_batch_job_shell_dtls table. In the flx_batch_job_shell_dtls table:

n FLG_PROCESS_TYPE column indicates whether it is RecoverableBatchProcess (RBP) or
SimpleBatchProcess (SBP).

n FLG_RECOVERY_MODE column indicates whether the Recovery mode is ON or OFF

n Simple Batch Process should have Recovery Mode as ON.

For Example:

Total Number of records =20;
Commit Frequency = 10
Failed Records = 5, 18

The shell will be executed as follows:

n Recoverable Batch Process with Recovery Mode ON:

l Records 5 and 18 will be skipped and rest all the records will be committed successfully

n Recoverable Batch Process with Recovery Mode OFF:

l Records 1 - 5 will be skipped.

l Records 6 - 15 will be committed successfully.

l Records 16-18 will be skipped

l Records 19 - 20 will be committed successfully

n Simple Batch Process:

l Records 1- 4 will be committed successfully. Rest of the records will be skipped.

102 | Oracle Banking Enterprise Originations Host Extensibility Guide

8.5 Batch Configuration

8.4.4 Database Components
The Database Server houses the following components:

Batch Framework
Tables Description

flx_batch_job_
category_master

This table contains details of each of the category per branch group. This table
contains the description, last run date and the multi run flag for the category. The
status, state flag and the last Run Date for each category is maintained and
validated from this table during batch run.

flx_batch_job_grp_
category

This table contains the previous, current and the next run date for each category
per branch group.

flx_batch_job_
category_depend This table contains the category dependencies.

flx_batch_job_shell_
master

This table contains details of each shell per branch group. Shell wise status,
Last Run Date, process category and frequency of shell execution are the
critical attributes of this table.
This table will also specify whether the shell is Java Bean based shell or
Procedure Based shell.

flx_batch_job_shell_
depend

This table contains the dependencies of and for each shell in flx_batch_job_
shell_master.

flx_batch_job_shell_dtls This table will contain the details for executing Java Bean Based shell.

flx_<module>_drv_
<action> This driver table contains the batch execution details for the particular action.

flx_<module>_actions_
b

This table defines the action type, action name and action executor which gets
mapped to the driver table. The action type value is populated as action
sequence in the driver table.

flx_batch_job_shell_
results

This table contains execution details of each stream of each shell for each batch
run per branch group.

flx_batch_job_brn_grp_
mapping This table will contain the mapping between the branch group and the branches.

flx_batch_job_grp_brn_
xref

This table will contain the list of branches for which a category is being run. This
table will be used only when a category is running.

Table 8–1 Database Server Components

8.5 Batch Configuration
The following section defines the configuration which needs to be done in order to create a new category or
add a new batch shell for batch execution using the batch framework.

8.5.1 Creation of New Category
The following steps explain the creation of new category:

8 Batch Framework Extensions | 103

8.5 Batch Configuration

1. Create an entry in flx_batch_job_category_master:

This contains the new category name and category code along with branch group code to be defined
here.

Columns Description

DAT_EOD_RUN This column specifies the date on which the category was last run.

COD_EOD_STATUS This column specifies the Status of the last category run. 0 - Successful
Completion ; 1 - The process was aborted after start.

COD_PROC_
CATEGORY

This column specifies the category code. 1 - EOD, 2 - BOD etc. Any
number of process categories can be defined.

FLG_MULTI_RUN This column specifies whether this category can be run multiple times. 0 -
Multi-Run is disabled; 1 - Multi-Run is enabled.

FLG_EOD_STATE This column specifies the flag indicating the state of the category. R -
Running ; C - Completed (i.e. not running).

TXT_CATEGORY This column specifies the category description.

COD_BRANCH_
GROUP_CODE This column specifies the code of the Branch Group of the category.

OBJECT_VERSION_
NUMBER This column specifies the version number of the category.

NAM_PROD_REP_
DB This column mentions about the database repository.

Table 8–2 FLX_BATCH_JOB_CATEGORY_MASTER

2. Create an entry in flx_batch_job_grp_category:

This contains branch group code, new category code, bank code and dates relating to run the category.

Columns Description

BRANCH_GROUP_
CODE This column specifies the Branch Group Code.

COD_PROC_
CATEGORY This column specifies the procedure category.

DAT_LAST_
PROCESS This column specifies the date on which the category was last run.

DAT_PROCESS This column specifies the current date of the category.

DAT_NEXT_
PROCESS This column specifies the next date of the category.

Table 8–3 FLX_BATCH_JOB_GRP_CATEGORY

3. Create an entry in flx_batch_job_category_depend (if required):

104 | Oracle Banking Enterprise Originations Host Extensibility Guide

8.5 Batch Configuration

This table will contain the category dependency. If the category does not depend on any other
category, no entry in this table is required.

Columns Description

COD_PROC_
CATEGORY This column specifies the procedure category.

COD_BRANCH_
GROUP_CODE This column specifies the branch group code.

COD_PROC_REQD_
CATEGORY

This column specifies the dependency of the required procedure category
which needs to be run before this category.

COD_PROC_
VALIDATION_DATE This column defines the validation time. It can be Current/Previous.

Table 8–4 FLX_BATCH_JOB_CATEGORY_DEPEND

4. Create bean or procedure based shells:

New shells (bean/procedure based, as shown in the section below) are created and linked to the
category by populating the cod_proc_category column in those tables with the new category code
created in the flx_batch_job_category_master.

5. Add enumeration:

In the middleware code, add an enum value in the ProcessCategoryType.java for the category.

6. Add category code in the property file:

In the middleware code, add the entry for the category in the ProcessCategoryType_en.properties file.

7. Middleware changes:

If any validations required or any dependency on other categories we can make changes in
EODShellProgressManager.java file accordingly.

8 Batch Framework Extensions | 105

8.5 Batch Configuration

Figure 8–5 Creation of New Category

8.5.2 Creation of Bean Based Shell
In this batch execution (Type "B"), the business logic is provided in the service method of the java class.

106 | Oracle Banking Enterprise Originations Host Extensibility Guide

8.5 Batch Configuration

1. Create an entry for Shell Parameters in the table FLX_BATCH_JOB_SHELL_MASTER.

Columns Description

COD_EOD_
PROCESS

Process code. This is the name of the program module that will be started
as a process by the EOD monitor.

TXT_ PROCESS Process name to be displayed in the new UI screen.

FRQ_PROC
Frequency at which this process is to be run.
1 - Daily 2 - Weekly 3 - Fortnightly 4 - Monthly 5 - Bi-monthly 6 - Quarterly 7
- Half-yearly 8 - Yearly.

COD_PROC_
STATUS

Process Status Code 0 - Complete 1 - Started 2 - Not Started 3 - Aborted 4
- Prerequisite Aborted 5 - Prerequisite Absent.

NUM_PROC_
ERROR Last error returned by this process.

FLG_RUN_TODAY Flag indicating whether process to be run today Y/N.

COD_PROC_
CATEGORY

Category code to which this shell belongs to e.g.: 1 - EOD, 2 - BOD and so
on.

SERVICE_KEY Service method to be executed.

NAM_COMPONENT

Name of the Procedure (if procedure based batch execution) or fully
qualified class name of the Batch Handler (if bean based).

com.ofss.fc.bh.batch.BatchFrameworkShellHelper - java bean based shell

com.ofss.fc.bh.batch.BatchReportShellBean - procedure based shell for
reports

com.ofss.fc.bh.batch.BatchReportRestartShellBean - procedure based for
report epilogue shell

TYPE_COMPONENT This indicates whether the specified nam_component is Java class or
Function. P stands for Function and B Stand for the Java Class.

NAM_DBINSTANCE The DB instance for PROD or REP (reports).

COD_BRANCH_
GROUP_CODE Specifies the branch group code that a branch is part of.

OBJECT_VERSION_
NUMBER This column specifies the version number of the category.

Table 8–5 FLX_BATCH_JOB_SHELL_MASTER

2. Create an entry for Shell Details in the table FLX_BATCH_JOB_SHELL_DTLS.

This table contains the following parameters;

8 Batch Framework Extensions | 107

8.5 Batch Configuration

Columns Description

COD_SHELL A unique code for batch shell.

SHELL_NAME Provide a name to batch shell.

SHELL_
DESCRIPTION Description about the batch shell.

COMMIT_
FREQUENCY

Provide the commit frequency thus, after every this no of records have
been processed the framework would commit those set of records

FLG_RECOVERY_
MODE

Flag indicating whether recovery mode is ON or OFF. Possible values are
'Y' and 'N' only. This would be only used by Batch Processes which
support recovery mode functionality but there might be batch processes
which would ignore this flag (e.g.: SBP).

FLG_STREAM_TYP
Define the type of stream for the batch shell. This would have three
possible values ('S' - fixed no of streams, 'R' - fixed no of rows, 'N' - no
streams).

STREAM_COUNT Define the no of streams to be created for the batch shell. This is only
applicable if the StreamType is marked as 'S' or 'R'.

INPUT_DRV_NAME Define the fully classified class name mapped to the driver table.

INPUT_SHELL_
PARAM Define the name for the shell parameter.

SERVICE_CLASS_
NAME

Define the fully classified class name for the service class. This class is
the starting point of the business logic execution.
In case of service class name as ActionSetProcessor, the action
sequence column is populated in the driver table. The execution is done
corresponding to those actions.

SERVICE_METHOD_
NAME

Define only method name of the service. The service method should have
input parameter as driver table entity.

DRV_POP_PROC_
NAME

Defines the name procedure used for driver table population. The
procedure should have three input parameters branch group code, process
date and next process date. Use only procedures instead of packages for
data population. Because db2 will not support Package.

FLG_PROCESS_
TYPE

It defines the type of process RBP or SBP. In RBP (Recoverable Batch
Process) if any records fails in batch it will continue and execute rest of
the records in the stream. But in case of SBP (Simple Batch process) it
will abort the stream.

HELPER_CLASS_
NAME It defines the helper class for caching big queries.

BATCH_NO Indicates the batch number for the shell.

Table 8–6 FLX_BATCH_JOB_SHELL_DTLS

3. Create an entry for Shell Execution Order in the table FLX_BATCH_JOB_SHELL_DEPEND.

108 | Oracle Banking Enterprise Originations Host Extensibility Guide

8.5 Batch Configuration

Columns Description

COD_EOD_
PROCESS

Process code. This is the name of the program module that will be started
as a process by the EOD monitor.

COD_REQD_
PROCESS Required process code after which the framework will run process code.

COD_PROC_
CATEGORY Category of the Process Code. 1 - EOD, 2 - BOD and so on.

COD_REQD_PROC_
CAT Category of the required process code. 1 - EOD, 2 - BOD and so on.

COD_BRANCH_
GROUP_CODE This column specifies the branch group code.

Table 8–7 FLX_BATCH_JOB_SHELL_DEPEND

If the shell is not dependent on any other shell or category then no need to keep an entry in this table.

4. Create a new driver table (the name of the table prefix by FLX_<ModuleCode>_drv_<>) for the Batch
Shell. This is the table from which the data will be picked up for processing by the defined batch
process. This table should be populated by the procedure written for population of the driver table. This
table would contain the following parameters:

Column Description

DATE_RUN
Defines the date on which the batch job was run (process date).Value in
this column needs to be populated by the driver table population
procedure.

SEQ
Sequence no for the data present in the table i.e. simple sequence from 1
to maximum number of records present in table. Value in this column
needs to be populated by the driver table population procedure.

PROCESS_RESULT

Define the column which would contain the result of processing of each
record of this table. This column would be updated the framework with
values 0,1, 2,3 or 4 indicating not processed, processing of record
successful, failed with business exception , failed with framework
exception or failed with SQL exception respectively.

ERROR_CODE
Define the column for error code. This would be updated the framework
with the error code returned by the processing logic (currently updating the
exception if any occurred).

BRANCH_CODE Attribute specifies the branch code in which the shell is executed.

BRANCH_GROUP_
CODE Attribute specifies the branch group code that a branch is part of.

ERROR_DESC Attribute specifies error description. This will populated by the batch
framework in case the record aborts.

ACTION_
SEQUENCE

In case of service action as ActionSetProcessor, the batch execution is
done through the executor framework defined in the action table of the

Table 8–8 Driver Table

8 Batch Framework Extensions | 109

8.5 Batch Configuration

Column Description

(Optional)

module. The details of this action table in mentioned below.
If user want to execute multiple actions, then the comma separated
action_type can be defined in this column. They will be executed based on
the defined priorities.

<Custom_Columns>

Define the other columns required which would contain the data required
by the processing logic. Typical examples would be a column containing
accountNo (if the main logic is per account) or customerId or txnRefNo
etc. We can have multiple such columns which are used for per record
processing for e.g. we can have two columns branchCode, accountNo.

Note

DATE_RUN, SEQ, BRANCH_GROUP_CODE columns are part of
the Unique key. For example, flx_in_drv_eod_actions

5. Add the entry of the action in the actions table (FLX_<ModuleCode>_actions_b) for the shell where the
service method is defined as ActionSetProcessor in the details table. This table would contain the
following parameters, for example, flx_td_actions_b.

Column Description

ACTION_TYPE Stores the type of action to be performed. The defined action type is
populated in the action sequence column of the driver table.

ACTION_LEVEL Stores the action level of the action as 0,1,2 based on the execution
status.

PRIORITY Stores the priority of the action.

ENTITY_STATUS Stores the status of the entity.

ACTION_NAME User friendly name of the action.

ACTION_DESC Stores the description of the action.

ACTION_EXECUTOR Stores the name of the action executor which needs to be executed when
the service action is populated as ActionSetProcessor.

HOLIDAY_
TREATMENT Stores the holiday treatment of the action.

HOLIDAY_EPOCH_
TYPE Stores the holiday epoch type of the action.

Table 8–9 Actions Table

6. Create a procedure (the name of the proc prefixed with ap_<Module Code>_pop_drv)which would
populate the data in the driver table, created above. This procedure would be called at the first time
when the Batch shell is run. The procedure will have only three arguments branch group code, process
date and next process date. For example, ap_in_pop_drv_eod_actions.

110 | Oracle Banking Enterprise Originations Host Extensibility Guide

8.5 Batch Configuration

7. Create an entity which extends AbstractBatchData and map this entity to the driver table. This entity
name would be the one which will carry the data to be processed for batch processing. This should be
provided in the InputDataName column of flx_batch_job_shell_dtls table. e.g.:
InterestEODActionSetBatchData

8. Map the entity to the driver table in the hbm. The entity attributes should represent only Extra columns
added in the driver table. They shouldn't be mapped to the seq, date_run, error_code, process_result
columns. For example, InterestEODActionSet.hbm.xml.

9. Make additions in batch-mappings.cfg file for the new hbm entities created for BatchData. For
example, account-mappings.cfg.xml

10. CreateHelper Class for caching big queries in Application layer. The fully qualified class name of the
helper class needs to be defined in theHELPER_CLASS_NAME column of the FLX_BATCH_JOB_
SHELL_DTLS table. For example, InterestEODActionSetBatchDataHelper.java

11. Create a service processor classwith the service method which processes the batch application.
For example, ActionSetProcessor

The fully qualified class name of this service processor class need to be defined in theSERVICE_
CLASS_NAME column of the FLX_BATCH_JOB_SHELL_DTLS table.

This processing method defined in this class should be specified in theSERVICE_METHOD_NAME
column of the FLX_BATCH_JOB_SHELL_DTLS table.

The service method should have two input arguments - ApplicationContext and AbstractBatchData.

If the shell needs to handle the batch exceptions, the service processor class should implement
IBatchHandler interface.

Note

The above steps would suffice for creating a batch shell to be run using
the new Batch Framework. The Results of the shell will be present in
the FLX_BATCH_JOB_SHELL_RESULTS table.

8.5.3 Creation of Procedure Based Shell
In this batch execution (Type "P"), the business logic is provided in the Stored Procedures.

1. Create an entry forShell Parameters in the table FLX_BATCH_JOB_SHELL_MASTER. Same as
described in the above section.

2. Create an entry forShell Execution Order in the table FLX_BATCH_JOB_SHELL_DEPEND. Same
as briefed in the above section if there is any dependency with any other shell.

3. Create a function in Database which contains the Business logic. This function will be used for batch
procedure based execution and the signature of the function must have the arguments as shown in the
example:

CREATE OR REPLACE FUNCTION ap_as_batch_verify
(var_pi_cod_brn_grp_code VARCHAR2,
var_pi_cod_user_no NUMBER,
var_pi_cod_user_id VARCHAR2,
var_pi_dat_process DATE,
var_pi_nam_bank VARCHAR2,

8 Batch Framework Extensions | 111

8.5 Batch Configuration

var_pi_cod_stream_id NUMBER,
var_pi_cod_eod_process VARCHAR2,
var_pi_cod_proc_category NUMBER) RETURN NUMBER AS
VAR_L_RETCODE NUMBER;
BEGIN
VAR_L_RETCODE := 0;
-----------------------------1. Init Restart-----------------------

BEGIN
plog.error('var_pi_dat_process : ' || var_pi_dat_process);
var_l_ret_code := ap_ba_init_restart(var_pi_cod_eod_process,
var_pi_cod_brn_grp_code,
var_pi_cod_proc_category);
IF (var_l_ret_code != 0) THEN
BEGIN
IF (var_l_ret_code = -2) THEN
RETURN var_l_ret_code;
ELSE
ora_raiserror(SQLCODE, 'Error in executing Init Restart ', 53);
RETURN 95;
END IF;
END;
END IF;
END;
-------------------------------2.Bisuness Logic--------------------

...we can write a piece of code …or a new proc which contain all
the business logic...
---------------------------------3.Finish Restart------------------

BEGIN
var_l_ret_code := ap_ba_finish_restart(var_pi_cod_eod_process,
var_pi_cod_brn_grp_code,
var_pi_cod_proc_category,
var_pi_dat_process);
IF (var_l_ret_code != 0) THEN
ora_raiserror(SQLCODE, 'Error in executing Finish Restart ', 76);
RETURN 95;
END IF;
END;

return 0;
EXCEPTION
WHEN OTHERS THEN
ora_raiserror(SQLCODE,
'Execution of ap_as_batch_verify Failed',
37);

112 | Oracle Banking Enterprise Originations Host Extensibility Guide

8.5 Batch Configuration

RETURN 95;
END;/

8.5.4 Population of Other Parameters
The following procedures describe the population of other parameters:

1. Create database credential details for Lock Connection in the jdbc.properties file

Figure 8–6 Population of Other Parameters

2. Create datasource on the host server where the batch needs to be executed

Figure 8–7 Population of Other Parameters - General Tab

8 Batch Framework Extensions | 113

8.5 Batch Configuration

Figure 8–8 Population of Other Parameters - Connection Pool

3. Enable Node Affinity for Batch Processing (Optional)

This feature can be used for Clustered Database environment. In this feature connections taken by
threads are pinned to a particular database node explicitly in order to reduce Cluster Wait events.

4. To enable this feature, set IS_DB_RAC = true in jdbc.properties file and specify the number of DB
nodes.

Figure 8–9 Population of Other Parameters - Set IS_DB_RAC

5. Create a separate data for each node in the cluster. Each of these connections will have the IP of an
individual node instead of the SCAN-IP. Specify the data source configuration per node in the cluster in
jdbc.properties.

114 | Oracle Banking Enterprise Originations Host Extensibility Guide

8.6 Batch Execution

Figure 8–10 Population of Other Parameters - Specify Data

8.6 Batch Execution
The user can execute the batch process from the task code EOD10 screen. User needs to select the process
category, job type and job code. The corresponding shells get populated in the table below which can be
started by clicking on the start/restart button.

User can also monitor the performance by clicking on the Refresh button available in the Category Details
section. The execution of the batch takes care of shell dependencies and the dependent shells are run once
their dependencies are executed.

Figure 8–11 Batch Execution

8 Batch Framework Extensions | 115

116 | Oracle Banking Enterprise Originations Host Extensibility Guide

9 Uploaded File Data Processing

In Banks, there are multiple times when the bulk load of data is available in the form of files which needs to be
uploaded and processed in the banking application. An example for the same can be salary credit processing.
The salary credit data is provided by the organizations in the form of files where employer account needs to be
debited and the multiple accounts of the employees needs to be credited for the provided data in the files.

In OBP, file upload and file processing are two independent processes where the upload of file is done as one
process and the processing on the uploaded data is done as another process. Every upload provides a unique
file lD for the uploaded file. The processing is then done for each uploaded file and the final status is then
provided at the end of the processing in the form of ProcessStatus.

The below section, from the extensibility perspective, provides the detailed understanding of the steps
involved in the business logic processing of the files once the files are uploaded from the upload services.
After the upload of the data, the data gets populated in the temporary tables in the database with the unique
file id, which is then used for the processing of the uploaded file for the required business logic.

In the above mentioned salary credit example, the employer account details (in the form of header records)
and the multiple employee account details (in the form of detail records) can be uploaded in OBP through the
file upload, functionality which can then be processed for debiting the employer account and crediting the
multiple salary accounts of the employees.

The framework of the uploaded file processing is shown in the sequence diagram below:

9 Uploaded File Data Processing | 117

9.1 Configuration

Figure 9–1 Uploaded Data File Processing Framework

From the implementation perspective, the following sections describe the configuration and processing of
uploaded file.

9.1 Configuration
The configuration part of the uploaded file processing requires definition of the following components that
needs to be defined for the processing on the uploaded file.

118 | Oracle Banking Enterprise Originations Host Extensibility Guide

9.1 Configuration

9.1.1 Database Tables and Setup
In case of file processing, there is one master table and individual record process tables for the recordType.

n FLX_EXT_FILE_UPLOAD_MAST

Column Name Description

COD_FILE_ID This defines the primary key identifier as file id for each specific file.

COD_XF_SYSTEM
This identifies the system to which the file type is associated. This indicates
that the file is received from or sent to the particular system indicated by the
system code.

FILE_TYPE This identifies the type of file that is being uploaded. For every file type the
format is defined. The file type can be like TXN .

NAM_HOFF_FILE Name of the uploaded file.

TXT_NRRTV File Narration for the uploaded file.

COD_ORG_BRN This stores the originating branch code from where the file is uploaded.

CTR_BATCH_NO This identifies the batch number of the file upload. This is generated internally.

DAT_FILE_PROCESS The process date as specified while uploading a file.

COD_FILE_STATUS Indicates the current status of the file.

DAT_FILE_UPLOAD Indicates when the file was uploaded.

DAT_TIM_PROC_
START The start time indicates the time the processing starts.

DAT_TIM_PROC_END The end time indicates the time the processing ends.

DAT_FILE_REVERSE Indicates when the file was reversed.

CTR_TOTAL_REC This value indicates the total records in the file.

CTR_PROCESS_REC This Value indicates the number of records processed for a file.

CTR_REJECT_REC This Value indicates the number of records rejected for a file.

FILE_SIZE This value indicates the size of the file in bytes.

COMMENTS The file Comments for the uploaded file if the processing fails.

FILE_CHECK_SUM This column is used to store check sum of the file.

FROM_ODI This flag is used to indicate whether upload is happening from ODI.

CURR_RECORD_
TYPE

This column denotes the current record type being processed, updated after
every recordType is successfully processed.

Table 9–1 FLX_EXT_FILE_UPLOAD_MAST

n FLX_EXT_<<Process>>_HEADERRECDTO e.g. FLX_EXT_SALCREDIT_HEADERRECDTO

n FLX_EXT_<<Process>>_DETAILRECDTO e.g. FLX_EXT_SALCREDIT_DETAILRECDTO

The file ld and record Id together as the key forms the record identifier in the record tables. The mandatory
fields in the record tables are mentioned below. The additional required fields should be defined as the
additional columns in the record tables.

9 Uploaded File Data Processing | 119

9.1 Configuration

Column Name Description

RECORDID This defines the primary key identifier as record id in the table. This is generated
for every record.

FILEID This is the primary key identifier as file id for the specific file.

RECORDTYPE The type of record; possible values 'H', 'D' and 'F'.

RECORDNAME Name of the record type; possible values 'Header', 'Detail' and 'Footer'.

DATA
Stores the complete data of each row of the file. This is populated for inquiry
purposes that the user can view the contents of the record as it was read from
the file.

LENGTH Total length of DATA. This value is populated after the record is parsed.

COMMENTS Comment update at the time of GEFU Upload and Processing of record.

RECORDSTATUS
List of Record Status : 1-UPLOADED, 2-FAILED_UPLOAD, 3-CANCELLED,
4-INPROGRESS, 5-PROCESSED, 6-FAILED_PROCESS, 7-REVERSED, 8-
FAILED_REVERSED, 9-ABORTED, 10-MARKED_FOR_PROCESS.

DATE_RUN This column holds the value of batch job's run date.

SEQ This column holds the value of batch job's sequence number.

PROCESS_RESULT This column holds the value of batch job process result.

ERROR_CODE This column holds the value of batch job's error code.

ERROR_DESC This column indicates the Error Description.

BRANCH_CODE This column holds the branch code of the branch.

BRANCH_GROUP_
CODE This column holds the value of branch Group code.

Table 9–2 Mandatory Fields in Record Tables

n FLX_EXT_FILE_PARAMS

This table contains the information about the file definition template which is used to define the handlers, DTO
and other details required for the processing of the uploaded file.

Column Name Description

COD_XF_SYSTEM
This identifies the system to which the file type is associated. This indicates
that the file is received from or sent to the particular system indicated by the
system code.

FILE_TYPE This identifies the type of file that is being uploaded. For every file type the
format is defined. The file type can be like TXN.

NAM_XF_SYSTEM
Name of the system to which the file type is associated. This indicates that the
file is received from or sent to the particular system indicated by the system
code.

NAM_FILE_TYPE This is name of the type of file that is being uploaded. For every file type the

Table 9–3 FLX_EXT_FILE_PARAMS

120 | Oracle Banking Enterprise Originations Host Extensibility Guide

9.1 Configuration

Column Name Description

format is defined. The file type would be like PYMT (Payment File) or SAL
(Salary Upload).

NAM_UPLOAD_TMPL XFF file definition template name.

FLG_OUTPUT_REQD Once the processing of all the records is complete, a check is made if its value
is 'Y' and then the response file is generated accordingly.

FLG_FILE_
TRANSACTIONAL Used to decide, whether File level validation is required or not.

CTR_COMMIT_SIZE Used to commit records in batch while processing, so it's the batch size.

RELATIVE_PATH If provided, this searches for xff file in the path: base_folder/folder_name_
mentioned_here.

COD_ADHOC_
REQUEST_CLASS Adhoc request class name

CTR_UPLOAD_
COMMIT_SIZE Used to commit records in batch while validation, so it's the batch size.

FLAG_DUPLICATE_
FILE_CHECK This flag is used to indicate whether duplicate file check is required or not.

FLAG_FROM_ODI This flag is used to indicate whether upload is happening from ODI.

n FLX_BATCH_JOB_SHELL_DTLS

This table contains the information about the batch processing with bean based shell mechanism as
described in the 'Batch Framework Extension' section. The sample values are provided below:

Columns Description Sample Values

COD_SHELL
A unique code for batch
shell. For example,
'upld_batch_shell_
<ProcessType>'

upld_batch_shell_SalCredit

SHELL_NAME Name for batch shell GEFU Processing Shell For Salary Credit

SHELL_
DESCRIPTION

Description about the
batch shell GEFU Processing Shell For Salary Credit

COMMIT_
FREQUENCY Commit frequency 100

FLG_
RECOVERY_
MODE

Recovery mode - ON /
OFF Y

FLG_STREAM_
TYP

Type of stream : 'S' -
fixed no of streams, 'R'
- fixed no of rows, 'N' -
no streams

S

Table 9–4 FLX_BATCH_JOB_SHELL_DTLS

9 Uploaded File Data Processing | 121

9.1 Configuration

Columns Description Sample Values

STREAM_
COUNT

No of streams for the
batch shell. Applicable
only for StreamType as
'S' or 'R'

2

INPUT_DRV_
NAME

Fully classified class
name mapped to the
driver table

com.ofss.fc.entity.upload.AbstractRecordDTO

INPUT_SHELL_
PARAM

Name for the shell
parameter AbstractRecordDTO

SERVICE_
CLASS_NAME

Fully classified class
name - starting point of
the business logic
execution

com.ofss.fc.upload.processor.batch.BatchRecordProcessor

SERVICE_
METHOD_
NAME

Method name of the
service processRecord

DRV_POP_
PROC_NAME

Defines the name
procedure used for
driver table population

ap_gefu_pop_drv_gefu_rec

FLG_
PROCESS_
TYPE

RBP (Recoverable
Batch Process) if any
records fails in batch, it
will continue and
execute rest of the
records in the stream or
SBP (Simple Batch
process) it will abort the
stream

RBP

HELPER_
CLASS_NAME

Helper class for
caching big queries com.ofss.fc.upload.processor.batch.GEFUBatchJobHelper

BATCH_NO Batch number for the
shell 1

9.1.2 File Handlers
File Handler class is written for processing of the uploaded file and should extend the AbstractFileHandler.
The class name of the File Handler is mentioned in the File Definition XML. In this class, the following
abstract methods should be implemented:

n isValid() : To check if the particular uploaded file is valid. Validations such as, is the file uploaded
duplicate or not, or are the header details valid or not are done as part of file level validations.

n processFile() : To write the actual processing business logic where the functionality is implemented, if
required, or else a default blank implementation is executed.

122 | Oracle Banking Enterprise Originations Host Extensibility Guide

9.1 Configuration

Figure 9–2 File Handlers

9.1.3 Record Handlers for Both Header and Details
This class provides the methods for record level validations and processing. It should extend the
AbstractRecordHandler. The class name of the Record Handlers are also mentioned in the File Definition
XML. The following abstract method needs to be implemented in this class:

n isValid() : To check if the particular uploaded record is valid for the processing purpose.

n process() : To write the actual processing business logic where the functionality is implemented. It is
called once the file is successfully validated.

9 Uploaded File Data Processing | 123

9.1 Configuration

Figure 9–3 Record Handlers for Both Header and Details

9.1.4 DTO and Keys Classes for Both Header and Details
This is a persistent class for the particular process. This class provides the fields which represents the
characteristics of the record data. This class is defined for each record type of a file.

124 | Oracle Banking Enterprise Originations Host Extensibility Guide

9.1 Configuration

Figure 9–4 DTO and Keys Classes for Both Header and Details - HeaderRecDTOKey

9 Uploaded File Data Processing | 125

9.1 Configuration

Figure 9–5 DTO and Keys Classes for Both Header and Details - AbstractDTORec

9.1.5 XFF File Definition XML
The xff file contains all the information about the different record type DTOs, the fields in those DTOs and the
handlers pertaining to the uploaded file. The name of the xff file is mentioned in the FLX_EXT_FILE_
PARAMS table. The file details are read from each tag in xff file and interpreted as described below in the
table. The record element can occur N number of times based on number of record types present, for example
if a particular upload has three record types Header, Detail and Trailer then there will be three elements for
Record, each describing the three record types.

There are two one-to-many relationship in the file definition xml file:

n One ’File’ element can have many ’Record’ elements, depending upon the number of recordType
present for this upload.

n One ’Record’ element can have many ’Field’ elements, depending upon the number of fields present for
this recordType of upload.

126 | Oracle Banking Enterprise Originations Host Extensibility Guide

9.1 Configuration

Elements Attributes Description

File Contains all details about the FileHandler, there is only once
occurrence of this element.

fileName This denotes logical name of the file.

validationClassName Fully qualified name of the FileHandler class.

encryptionClass This denotes the name of the class that is used for encryption
(optional).

charSet This denotes the Charset of the file.

delimiter This denotes delimiter coming in the file (optional).

comments This is used to store comment on the file (optional).

lengthInBytes This Boolean variable is used to denote whether the file's length
has to be calculated in bytes.

xffSystem Name of xff file system, name should be same as mentioned in
COD_XF_SYSTEM in table FLX_EXT_FILE_PARAMS.

fileType Name of file type, name should be same as mentioned in FILE_
TYPE in table FLX_EXT_FILE_PARAMS.

Record Child element of "File" can have any number of occurrences
depending upon number of RecordType for a particular Upload.

recordHandlerClassName Fully qualified name of the Handler class for this RecordType.

recordType This denotes record type which can be "Header", "Detail" or
"Trailer"

streamingAllowed Indicates if the streaming is allowed for the record; Possible
values are true or false.

dtoClassName Name of DTO for this particular recordType.

recordName Name of this record.

multiplicity
This denotes whether this record type will appear only once in
the file or multiple times. Value of this field will be either 1 (for
only once) or -1 (for multiple times).

maxFields This denotes the maximum number of fields coming in the record
type.

comments This stores comments (optional).

maxLogicalRecords This denotes maximum number of records that may come of this
record type.

parent

lastFieldOfVariableLength This denotes whether the last field of the record is variable or not.
This value can be either "true" or "false".

Field Child element of "Record" can have as many occurrences as the
number of fields in a particular recordType.

Table 9–5 XXF File Definition XML

9 Uploaded File Data Processing | 127

9.1 Configuration

Elements Attributes Description

name Name of the field.

type This denotes field type. E.g.:- 'CHAR', 'NUMBER' and so on.

length Length of field.

format This denotes format of the field.

recordIdentifier This denotes whether this field is used to identify the record.
Value of this field can be either true or false.

nullable This denotes whether this field can be null or not.

defaultValue Default value of this field if any.

comments This stores the comment on the field (optional).

crossReferenceID If another field wants to refer to this field then this id will be used.

Figure 9–6 XXF File Definition XML

128 | Oracle Banking Enterprise Originations Host Extensibility Guide

9.2 Processing

9.2 Processing
Processing of an uploaded file is done on two levels, one on file level and the other on Record level. The
processing is initially triggered when a message is sent on to a JMS Queue. The message is then picked up
by an MDB which parses the message into a key value pair, and then passes it on to the FileProcessor by
passing the processor type as an input. Based on the processor type, that is, header or detail record, the file
processor initiates respective processing by invoking specific business logic written as file or record level
handlers.

The processing of the business logic to different Service APIs of different modules are carried in the handler
classes of the records. The processForRecordType() method of the FileProcessor invokes the respective
handler classes that is, if the Header section is being processed, it invokes the HeaderHandler class.

As per the process, the headers are processed first and then the details records. Each and every record is
processed individually. As soon as a file is picked for processing, its status is changed to InProgress so that
the same file is not picked by any other process for processing. Individual records are processed based on its
record type.

9.2.1 API Calls in the Handlers
The API calls of different exposed application services are called from the handlers. The respective method
call from the adapter will return the response object which can be further used for another adapter call as the
input value or for the validation purpose. In the following example, it is shown that the salary account is
debited for the user and then the returned response summary is used for validation purpose before raising the
accounting for that account.

<Response1>=Adapter1.<method call>(<method parameters>)
If(<Validation on Response1>) {
<Response2>=Adapter2.<method call>(<method parameters containing
Response1>) }
Example:
executionResponse = adapter.debitSalaryAccount()
if(executionResponse.getSummary().getIsSuccessful()) {
adapter.raiseAccounting(); }

9 Uploaded File Data Processing | 129

9.2 Processing

Figure 9–7 API Calls in Adapters

9.2.2 Processing Adapter
The processing adapters needs to be implemented for invoking the required application service API. In the
example, the new methods as creditSalaryAccount(), debitSalaryAccount() and raiseAccounting() are
implemented by the user based on their requirements.

130 | Oracle Banking Enterprise Originations Host Extensibility Guide

9.3 Outcome

Figure 9–8 Processing Adapter

9.3 Outcome
In case of header or footer, there is only one Record for these record types, hence based on Record Level
Status returned, the processing status is set, if RecordLevelStatusType is SUCCESS or WARNING, the
PROCESSING_STATUS will be marked as SUCCESS else FAILURE.

In case of detail records, processing status is decided based on the criteria that is, if NumberOfRecords with
record processing status as FAILED is equal to totalNoOfRecords then overall ProcessStatus is FAILED or if
less than totalNoOfRecords then overall ProcessStatus is WARNING and if zero then overall ProcessStatus
is SUCCESS. Also, in case there is error in insertion of any record to the working table then overall
ProcessStatus is FAILED.

Each record on processing can have any one of the three process status. If process status is success it
moves to the next record. If process status is warning then it moves to the next record but marks the record
as failed. If process status is failure then an Exception is raised and the file is marked as Failed.

9 Uploaded File Data Processing | 131

9.4 Failure/Exception Handling

Status Name Value Description

SUCCESS 0 Processing of this record is a success. Further record processing should
continue.

FAILURE 1 Processing of this record has failed. Further record processing should not
continue.

WARNING 2 Processing of this record has failed. Further record processing should continue.

Table 9–6 Process Status

On successful processing, the record will get persisted into the respective table and return a status of '5' to
the invoked method.

But, in case of failure, the status is returned as '6' for that particular record and it continues with the next
record for processing. Also the exceptions raised during a failure can be appended into the "comments"
column of the respective table.

9.4 Failure/Exception Handling
There can be processing failure in case of any validations failure caused by the service. In case of any
exceptions raised, it will be handled in the handler class.

While invoking an API when the SessionContext variables are not passed properly it would result in null.
’Invalid user id’ will be added in the comments column and the processing will not happen.

The exceptions raised during processing can be logged into the comments column of the respective table by
calling the setErrorMessage() method. In case of process failure in file handling, this method can also be
invoked from inside the catch block of the processFile() method:

this.setErrorMessage(errorMessage);
processStatus = ProcessStatus.FAILURE;

132 | Oracle Banking Enterprise Originations Host Extensibility Guide

10 Alerts Extension

OBP has to interface with various systems to transfer data which is generated during business activities that
take place during teller operations or processing. OBP Application is, therefore, provided with the framework
which can support on-line data transfer to interfacing systems.

The event processing module of OBP provides a mechanism for identifying executing host services as
activities and generating or raising events that are configured against the same. Generation of these events
results in certain actions that can vary from dispatching data to subscribers (customers or external systems)
to execution of additional logic. The action whereby data is dispatched to subscribers is termed as Alert.

The following sections provides an overview of what the developer needs to do in order to add a new Activity
and anEvent which will be raised on execution of the said that activity. We will be using a sample activity and
event to illustrate the steps.

Use Case: In theParty -> Contact Information -> Contact Info screen, user can create or update the contact
details for a party. This screen has many attributes like telephone number, email, do not disturb info and so
on. We will be registering this update transaction as anActivity and creatingEvents which will be raised on
this activity.

10.1 Transaction as an Activity
This section describes how existing or new online transactions can be supported and recognized as activity
for the events that are setup in the system with action, subscriber and dispatch configuration already in place.
A transaction can be either financial or maintenance executing in the application server middleware host
environment. This kind of setup is particularly useful when we have external systems like CEP, BAM to
which data needs to be dispatched online.

The procedure for creating activities and events for a financial transaction is a subset of the same for a
maintenance transaction. The aforementioned use case describes a maintenance transaction.

10.1.1 Activity Record
You will need to create a record for the activity in the table FLX_EP_ACT_B which stores all the recognized
activities. This table has the following columns:

Column
Name Use Example

COD_ACT_ID
The unique activity id for
the activity. This id will
be used in the activity -
event mapping as well

'com.ofss.fc.app.party.service.contact.
ContactPointApplicationService.updateContactPoint.dndInfo'

TXT_ACT_
NAME Activity name 'ContactPointApplicationService.updateContactPoint.dndInfo'

TXT_ACT_
DESC

Meaningful description
of the activity 'DND Info Change'

Table 10–1 FLX_EP_ACT_B

10 Alerts Extension | 133

10.1 Transaction as an Activity

Column
Name Use Example

MODULE_
TYPE

Module code for the
module of which the
transaction is a part off

'PI'

CREATED_
BY

User id of the user
creating this record 'SYSTELLER'

CREATION_
DATE

Creation date of this
record to_date('20110310', 'YYYYMMDD')

LAST_
UPDATED_
BY

User id of the user last
updating this record 'SYSTELLER'

LAST_
UPDATE_
DATE

Last update date of this
record to_date('20110310', 'YYYYMMDD')

OBJECT_
VERSION_
NUMBER

Version number of this
record 1

OBJECT_
STATUS Status of this record 'A'

Sample script for Activity Record:

Figure 10–1 Sample script for Activity Record

10.1.2 Attaching Events to Activity
Recognized events can be attached to recognized activities. The mapping in this case can be many-to-many
viz., an activity can raise multiple events and an event can be raised by multiple activities.

10.1.3 Event Record
You will need to create an event record in the table FLX_EP_EVT_B which stores all the recognized events.
This table has the following columns:

Column Name Use Example

COD_EVENT_
ID

The unique event id for this event. This id will be used in the
activity - event mapping as well. 'PI_UPD_DND_INFO'

Table 10–2 FLX_EP_EVT_B

134 | Oracle Banking Enterprise Originations Host Extensibility Guide

10.1 Transaction as an Activity

Column Name Use Example

TXT_EVENT_
TYP The type of event 'ONLINE'

TXT_EVENT_
DESC Meaningful description for the event 'DND Info Updated'

EVENT_
CATEGORY_
ID

The category code for this event 2

Sample script for Event Record:

Figure 10–2 Sample script for Event Record

10.1.4 Activity Event Mapping Record
You will need to create an activity event mapping record in the table FLX_EP_ACT_EVT_B which stores the
mapping between all activities and events. This table has the following columns:

Column Name Use Example

COD_ACT_ID
The unique activity id
as specified in the
activity table

'com.ofss.fc.app.party.service.contact.
ContactPointApplicationService.updateContactPoint.dndInfo'

COD_EVENT_
ID

The unique event id as
specified in the event
table

'PI_UPD_DND_INFO'

TXT_ACT_
EVT_DESC

Meaningful description
for the activity event
mapping

'DND Info Updated'

TXT_EVT_TYP The type of event 'OTHER'

TXT_ACT_
EVT_TYP

The type of activity
event mapping 'ONLINE'

Table 10–3 FLX_EP_ACT_EVT_B

Sample script for Activity Event Mapping Record:

Figure 10–3 Activity Event Mapping Record

10 Alerts Extension | 135

10.1 Transaction as an Activity

10.1.5 Activity Log DTO
In order to transfer activity data to the actions defined for the event, you need to develop data objects to
contain the activity data. The DTO should implement the interface com.ofss.fc.xface.ep.dto.IActivityLog.
Module specific activity log DTO's which already implement the IActivityLog interface are present. These
DTO's contain the application specific and module specific activity data. You can extend the module's DTO
class and add the transaction specific activity data.

For party module, the class com.ofss.fc.app.party.dto.alert.IndividualPartyTypeDatalogDTO is one of the
classes that implement the IActivityLog interface. For the aforementioned activity, the activity log DTO can
be as follows:

Figure 10–4 Activity Log DTO

10.1.6 Alert Metadata Generation
This section describes the different types of alert metadata generation.

Metadata Generation

To generate metadata for alerts you need to have plugin.

1. Once you have plugin you need to set properties in preferences in windows tab for Service Publisher,
Service Deployer and Workspace Path.

2. Go to your DTO class and right-click that class and click the following : Oracle Banking Platform ->
Generate DTOMetadata.

This will generate the insert scripts for following two tables:

n FLX_MD_DATA_DEFN

n FLX_MD_FIELDS_DEFN

These scripts will be generated in your config folder by default. The path of this script is:

136 | Oracle Banking Enterprise Originations Host Extensibility Guide

10.1 Transaction as an Activity

WorkspaceDirectory -> config -> meta-data-scripts -> incr-meta-data.log

Figure 10–5 Metadata Generation

Service Data Attribute Generation

After generating metadata, we need to generate service attribute which will be mapped with facts which will
be used in data bindings in Alert Maintenance screen AL04.

To generate we need to activity ID class for specific event, DTO is used for this activity ID.

1. Right-click that service and select Oracle Banking Platform -> Generate Service AttributeMetadata.

2. In this case also insert scripts will be generate in same location as metadata attributes.

This will generate the insert scripts for following tables:

n FLX_MD_SERVICE_INPUTS

n FLX_MD_SERVICE_OUTPUT

n FLX_MD_SERVICE_ATTR

There are some steps in generating of service attribute which are as follows:

10 Alerts Extension | 137

10.1 Transaction as an Activity

Figure 10–6 Service Data Attribute Generation

FLX_MD_SERVICE_ATTR is used to map the alert activity attribute with the fact code and to map the alert
activity attribute with the DTO field to extract the data from.

As an example, the key fields in FLX_MD_SERVICE_ATTR for an alert activity attribute have been listed
below:

Colum
n Description

COD_
SERVI
CE_
ATTR_
ID

The Unique ID for the Attribute of any Activity configured for an alert. For example,
com.ofss.fc.app.account.service.accountaddresslinkage.
AccountAddressLinkageApplicationService.createAccountAddressLinkage.
Alert.Party.Address.City.DTO

TYP_
DATA_
SRC

Indicates the Data Source(entity/input/DTO) for the Attribute of the Resource

COD_
ATTR_
ID

This field indicates the Fact Code. For example, Alert.Party.Address.City

Table 10–4 Key Fields in FLX_MD_SERVICE_ATTR

138 | Oracle Banking Enterprise Originations Host Extensibility Guide

10.1 Transaction as an Activity

Colum
n Description

COD_
SERVI
CE_ID

This field indicates the Activity ID. For example,
com.ofss.fc.app.account.service.accountaddresslinkage.AccountAddressLinkageApplicationS
ervice.createAccountAddressLinkage

REF_
FIELD_
DEFN_
ID

This field indicates the DTO leaf field from which the data is extracted. For e.g.:
com.ofss.fc.app.dda.dto.alert.AccountAddressLinkageAlertDTO.Address,com.ofss.fc.datatype
.PostalAddress.City
Data for this column is interpreted /extracted as follows.
com.ofss.fc.datatype.PostalAddress address =
com.ofss.fc.app.dda.dto.alert.AccountAddressLinkageAlertDTO.getAddress();
String city = address.getCity()

10.1.7 Alert Message Template Maintenance
User will maintain template format and template ID to be used for the alerts definition.

These messages need to be defined only if the same template is going to be used for multiple events. Else
there is a provision to define the message template during the definition of the alert itself.

All data elements defined within the '#' symbol will be defaulted in the panel below as data attribute.

For example, your account Number #Acct No# has been credited with #currency# #transaction amount#
being cash deposited.

The user can Mask certain digits in data elements that are preceded with '#' under the 'Attribute Mask'
column.

10 Alerts Extension | 139

10.1 Transaction as an Activity

Figure 10–7 Alert Message Template Maintenance

10.1.8 Alert Maintenance
Given below is the Alert Maintenance screen.

140 | Oracle Banking Enterprise Originations Host Extensibility Guide

10.2 Alert Subscription

Figure 10–8 Alert Maintenance

We can define the alert name, expiry date, alert type (Customer Subscribed/ Mandatory) and link this with
predefined activity and event. These entries are fed to table "flx_ep_act_evt_acn_b".

Now, we need to link a Recipient Message Template/s with this alert. For this we drag recipients from the
Recipient Panel on to the Recipient Message Template Panel. In this setup, we define the kind of recipient
and link this to predefined Message Template and Destination Types. The entry for this goes to table "flx_ep_
evt_rec_b".

Finally, we need to complete the Message Template Mapping Configuration for each Recipient Message
Template. For this, we map each data attribute of each Recipient Message Template with a corresponding
attribute (Fact Code) from the drop down. This drop down populates fact codes configured for this activity id in
the metadata table FLX_MD_SERVICE_ATTRIBUTE. The entry for this goes to table "flx_ep_msg_src_b"

10.2 Alert Subscription
Subscription can be done for alerts at account level or at application level (called as subscription level).

10 Alerts Extension | 141

10.2 Alert Subscription

Figure 10–9 Alert Subscription

10.2.1 Transaction API Changes
You will need to modify the transaction API to support the newly registered activities. This section gives an
overview of how the developer needs to modify the transaction API.

The entry point for activity business logic would be the service call for the transaction. In the aforementioned
use case, the service call would be
com.ofss.fc.app.party.service.contact.ContactPointApplicationService.updateContactPoint(...).

Figure 10–10 Transaction API Changes - Service Call

If the activity needs to be conditional, then the logic for evaluating the conditions should be present inside the
service call. This should be followed by the invocation of the routine to register the activity. In the

142 | Oracle Banking Enterprise Originations Host Extensibility Guide

10.2 Alert Subscription

aforementioned use case, the activity should be registered only if the update transaction updates the
attributes associated withDND Information. Following code snippet shows the conditional evaluation and
invocation of the call to register activity.

Figure 10–11 Transaction API Changes - Conditional Evaluation

The persistActivityLog(..) routine primarily takes theActivity Id, Event Id andActivity Log DTO. This routine
first calls a helper routine to populate the activity log DTO with the activity data and then passes on the DTO
to the appropriateEvent Processing Adapterwhich will register the activity and generate associated events.

Figure 10–12 Transaction API Changes - persistActivityLog(..)

You will need to add the business logic to populate the activity log DTO with the data specific to the
transaction and the activity. This logic can be present inside the activity helper class for the module. Module
specific activity attributes can also be populated in this logic. Following code snippet shows the activity log
DTO population with activity data for the aforementioned activity.

Figure 10–13 Transaction API Changes - Activity Log

10 Alerts Extension | 143

10.3 Alert Processing Steps

Figure 10–14 Transaction API Changes - Register Activity

TheEvent Processing Adapter contains the logic to register the activity and generate events. You can use the
existing adapter class com.ofss.fc.app.adapter.impl.ep.EventProcessingAdapter or write your own custom
adapter which must implement the interface com.ofss.fc.app.adapter.impl.ep.IEventProcessingAdapter.

All the above steps would suffice to support a transaction as an activity and raise events on the activity.

On successful completion of the transaction and the activity registration and event generation, you can view
the activity log in the table FLX_EP_ACT_LOG_B and the generated events log in the table FLX_EP_EVT_
LOG_B.

Actions associated with the activity events would pick up the activity and event data from these tables for
processing.

10.3 Alert Processing Steps
For any modules the starting point is EventProcessingAdapter method named
’registerActivityAndGenerateEvent’.

Through this we call ’registerActivityAndGenerateEvent’ method of ActivityRegistrationApplicationService
which marks actually registration of your activities and events.

During this activity the entries are made in table FLX_EP_ACT_LOG_B and FLX_EP_EVT_LOG_B with
appropriate comments depending on type of Alerts whether it is Mandatory (M) or Customer Subscribed (S).

There is one flag maintained in FLX_EP_EVT_LOG_B viz. FLG_PROCESS_STAT, which specifies status of
event.

In this step various validations are also performed such as checking if email Id of recipient is mentioned and
so on.

However, the final processing of alerts is managed in ’Interaction.java’ when it is about to close that is, call is
made in ’manageLastInteraction’.

144 | Oracle Banking Enterprise Originations Host Extensibility Guide

10.3 Alert Processing Steps

Figure 10–15 Alert Processing Steps

EventProcessStatusType

This shows status of event throughout cycle of event processing from Registration of event to Dispatch of
Alert. (It is maintained in FLX_EP_EVT_LOG_B table as "flg_process_stat").

The various statuses of events are as follows:

n GENERATED("G“)

n COMPLETED("C“)

n NO_SUBSCRIPTION("N")

n ABORTED("A")

n INITIATED("I")

n REINITIATED("R")

For any event online or batch, when it is logged for first time it is marked as Generated "G" in flx_ep_evt_log_b
table.

10 Alerts Extension | 145

10.3 Alert Processing Steps

Figure 10–16 Event Processing Status Type

JMS (Java Messaging Service) is used for dispatch of alerts.

For Online Alerts:

n Direct Approach: If alert gets send in first try, flg_process_stat is as "G" in FLX_EP_EVT_LOG_B
and alert is dispatched through JMS, and then entry for that event record is moved to FLX_EP_EVT_
LOG_HIST_B and flg_process_stat is marked as "C".

n EventPoller: If alert gets failed in first retry it will mark status as "R". In this case EventPoller will pick
the failed event and complete its processing and mark status as "A" and then entry for that event
record is moved to FLX_EP_EVT_LOG_HIST_B and flg_process_stat is marked as "C".

n For Batch Alerts: In case of batch alerts as no Interaction.close() is called, the direct approach is not
used in Batch Alerts. In this case only EventPoller approach is used.

146 | Oracle Banking Enterprise Originations Host Extensibility Guide

10.4 Alert Dispatch Mechanism

Figure 10–17 Batch Alerts

10.4 Alert Dispatch Mechanism
The dispatch mechanism is triggered by theAlertHandlerService for dispatching subscribed actions of type
Alert. The processing is implemented as part of the respective handlers. The handler services delegate the
call to theDispatcher based on the type of DestinationType configured in theRecipient at the time of
ActivityEventActionmaintenance which involves RecipientMessageTemplate setup.

The module provides definition of multiple dispatch detail configurations on the basis of SubscriberType and
various configuration parameters likeUrgencyType, ImportantType in the AlertTemplate.

The dispatcher uses theDispatchDataConverter to convert the data captured as part of activity registered in
the system into data which can be dispatched to the target subscriber.

10 Alerts Extension | 147

10.4 Alert Dispatch Mechanism

Figure 10–18 Alert Dispatch Mechanism

148 | Oracle Banking Enterprise Originations Host Extensibility Guide

10.4 Alert Dispatch Mechanism

Figure 10–19 Alert Dispatch Mechanism - Dispatcher Factory

10 Alerts Extension | 149

10.5 Adding New Alerts

Figure 10–20 Alert Dispatch Mechanism - Destination

The various Destination Types are coded as per the above diagram. This existing framework makes it further
extensible as per the requirements that is, you can add more destination types.

10.5 Adding New Alerts
To add a new alert:

1. Implement the Service Extension Interface for the application service of the method for which alert is to
be raised.

2. Use either the preServiceMethod() or postServiceMethod() hook for the method in the implemented
service extension class depending on the requirement.

3. The method should call the registerActivityAndGenerateEvent() of the EventProcessingAdapter class.
In case a custom adapter is required the custom adapter method should call

150 | Oracle Banking Enterprise Originations Host Extensibility Guide

10.5 Adding New Alerts

registerActivityAndGenerateEvent() of ActivityRegistrationApplicationService.

4. New Activity ID, Event ID and implementation of IActivityLogDTO have to be created.

10.5.1 New Alert Example
This example will explain the above points in detail.

Use Case:A new alert has to be added after updating a party name.

The class PartyNameApplicationService has a method updateIndividualName() that does this activity.

Create the extension class, say PartyNameApplicationServiceExt, for this application service by
implementing its extension interface IPartyNameApplicationServiceExt. Since the alert should be raised after
updation of party name we will use the postUpdateIndividualName() method.

Within the method a call to registerActivityAndGenerateEvent() in EventProcessingAdapter should be made.

Code snippet for the call:

com.ofss.fc.app.adapter.IAdapterFactory adapterFactory =
AdapterFactoryConfigurator.getInstance().getAdapterFactory
(ModuleConstant.EVENT_PROCESSING);
IEventProcessingAdapter adapter = (IEventProcessingAdapter)
adapterFactory.getAdapter(EventProcessingAdapterConstant.MODULE_TO_
ACTIVITY);
adapter.registerActivityAndGenerateEvent(applicationContext,
activityId, eventId, new Date(), activityLog);

In case a new customer adapter has to be used, a call to registerActivityAndGenerateEvent() in
ActivityRegistrationApplicationService should be made from within the adapter. A class called
ActivityEventKeyDTO is used which captures the event ID and activity ID.

Code snippet for the call:

ActivityRegistrationApplicationService activityManager = new
ActivityRegistrationApplicationService();
ActivityEventKeyDTO activityEventKeyDTO = new ActivityEventKeyDTO
();
activityEventKeyDTO.setActivityId(activityID);
activityEventKeyDTO.setEventId(eventID);
ActivityRegistrationResponse response =
activityManager.registerActivityAndGenerateEvent
(sessionContext,activityEventKeyDTO,eventProcessingDate,
activityLog);

The signature for the method is:

public String registerActivityAndGenerateEvent(ApplicationContext
applicationContext,
String activityID,
String eventID,
Date eventProcessingDate,
Object logObject) throws FatalException;

10 Alerts Extension | 151

10.5 Adding New Alerts

Create new activityID, eventID and logObject to be passed to this method.

ActivityID and EventID as explained in detail in the above section have to be added in the following database
tables. If data is not added in the tables, a runtime exception will occur while displaying the alert.

FLX_EP_ACT_B stores all the recognized activities.

FLX_EP_EVT_B stores all the recognized events.

FLX_EP_ACT_EVT_B which stores the mapping between all activities and events.

The Activity ID denotes the actual action that should raise the event within the application service and hence
for ease of understanding it should ideally be the fully qualified name of the method.

Eg.com.ofss.fc.app.party.service.contact.PartyNameApplicationService.updateIndividualName

The Event ID can be anything that denotes the event

For example, UPDATED_PARTY_NAME

The logObject is an implementation of IActivityLogDTO. For the new alert a new implementation has to be
created. The DTO should have fields mapped to the placeholders in the new alert to be added

For example, for the alert "Your name has been updated from #previous_Name# to #new_Name#
successfully."

the following DTO has to be made. The variables have to map to the placeholders in the alert template.

public class PartyNameChangeLogDTO implements IActivityLogDTO {
private static final long serialVersionUID = -3492413059506052931L;
private String updatedName;
private String registeredOldName;
//getters and setters for the variables
}
The DTO has to be populated with relevant data
E.g.:. private IActivityLog
populateActivityLogForIndividualPartyNameChange() {
PartyNameChangeLogDTO activityLog = new PartyNameChangeLogDTO();
activityLog.setUpdatedName("Andrew Matthew");
activityLog.setRegisteredOldName("Andy Matthew");
return activityLog;
}

10.5.2 Testing New Alert
JUnit test cases can be used to test the alert created by supplying sample input data. The example below
shows how the above new alert can be tested.

public void testPartyUpdateName() throws IOException {
String testCase = "PartyUpdateName";
ActivityRegistrationApplicationService
activityRegistrationApplicationService
= new ActivityRegistrationApplicationService();
ActivityEventKeyDTO activityEventKeyDTO = new ActivityEventKeyDTO
("com.ofss.fc.app.party.service.contact.
PartyNameApplicationService.updateIndividualName "," UPDATED_PARTY_
NAME");

152 | Oracle Banking Enterprise Originations Host Extensibility Guide

10.6 Support For Derived Facts

Date date = new Date();
SessionContext sessionContext = getSessionContext();
com.ofss.fc.app.party.dto.alert.PartyNameChangeLogDTO activityLog
= new com.ofss.fc.app.party.dto.alert.PartyNameChangeLogDTO ();
activityLog.setUpdatedName("Andrew Matthew");
activityLog.setRegisteredOldName("Andy Matthew");
try{
ActivityRegistrationResponse response
=
activityRegistrationApplicationService.registerActivityAndGenerate
Event(
sessionContext, activityEventKeyDTO, date, activityLog);
TransactionStatus result= response.getStatus();
dumpTransactionStatus("ActivityRegistrationApplicationService", "
testPartyUpdateName ", result);
logger.log(Level.FINER, "The ErrorCode is: "+ result.getErrorCode
());
} catch (FatalException e) {
logger.log(Level.SEVERE,"FatalException from"+THIS_COMPONENT_
NAME+". testPartyUpdateName ",e);
fail("Unexpected failure from " + THIS_COMPONENT_NAME + ".
testPartyUpdateName ");
}
}

For testing with the JUnit test cases we need to update the PoolType property in the
AlertPollerPool.properties as follows:

PoolType=JDK
The value should be JDK for testing with JUnit (standalone application) and JMS if the application is run on
WebLogic server.

10.6 Support For Derived Facts
Alerts are generated by assigning values to Facts that are mapped to the Alert Message Template
placeholders.

These values are derived from the ActivityLog attributes based on the seed data that maintains the mapping
information between the ActivityLog attributes and the Facts.

In Facts Module there is a provision to co-relate different Facts and derive the value of one Fact based on the
value of the related Fact. This is done by maintaining the relationship in certain Fact tables.

The same support for Derived Facts has been included in Alerts framework.

For example, to add Party First Name information to an Alert this Fact has to be defined.

The following inserts are used to create this Fact with the name Alert.Party.FirstName.

10 Alerts Extension | 153

10.6 Support For Derived Facts

Figure 10–21 Alert.Party.FirstName

In Alerts framework, the facts that are available by default are:

Figure 10–22 Facts in Alerts Framework

In addition to these Facts all the Facts that have been mapped with the Service Attributes of the Activity log
for the Activity Id of the Alert are available to the Alerts Framework for usage.

Facts that can be derived from any of the above Facts can be added to this list.

To relate and derive value of Alert.Party.FirstName with the help of available Fact Alert.Party.PartyId, the
relationship information and value derivation logic must be maintained in the Facts tables.

Figure 10–23 Alert.Party.PartyId

FLX_FA_VALUE_BINDINGS defines the relationship and FLX_FA_VALUE_DATASOURCES defines the
data derivation logic.

Similarly, additional derived Facts: Alert.Party.Prefix and Alert.Party.LastName can be maintained.

154 | Oracle Banking Enterprise Originations Host Extensibility Guide

10.6 Support For Derived Facts

Figure 10–24 Alert.Party.Prefix and Alert.Party.LastName

Use and test the maintenance and generation of Alerts using Derived Facts.

Figure 10–25 Message Template (Fast Path: AL03)

First, alter the existing Alert Message Template using the placeholder for the derived facts.

10 Alerts Extension | 155

10.6 Support For Derived Facts

Figure 10–26 Placeholder for Derived Facts

Next, map the new Message Template placeholders in Alert Maintenance screen with the Derived Facts,
which will also appear in the drop down of the Facts that are available to the Alerts Framework.

Figure 10–27 Alert Maintenance (Fast Path: AL04)

156 | Oracle Banking Enterprise Originations Host Extensibility Guide

10.6 Support For Derived Facts

Figure 10–28 Alert Maintenance - Map the NewMessage Template Placeholders

Figure 10–29 Alert Maintenance - Facts List

10 Alerts Extension | 157

10.6 Support For Derived Facts

Figure 10–30 Alert Maintenance - Mapping Completed

Next, perform a Mobile Number updation from the Contact Point screen. This triggers the Alert that was
altered earlier and the following mail is received.

Figure 10–31 Alert Mail on Mobile Number Update in Contact Point screen

The Alerts Framework has been able to substitute the place holders of the Message Template with the Fact
values derived from Derived Fact derivation logic in Facts Framework.

158 | Oracle Banking Enterprise Originations Host Extensibility Guide

11 Creating New Reports Using Oracle
Analytics Publisher

Oracle Analytics Publisher (formerly known as Oracle Business Intelligence Publisher) is a standalone
reporting and document output management solution that allows companies to lower the cost of ownership for
reporting solutions. It's strength is that it separates the data model from the actual report formatting/layout.
Oracle Analytics Publisher relies on 2 fundamental components to create reports, XML data and a template
that represents the look and feel of the report. The XML data can be generated from any number of sources
and Oracle Analytics Publisher makes accessing data in the proper format easy. Templates can be created in
Microsoft Word and Adobe Acrobat allowing almost anyone familiar with these desktop applications the ability
to create reports.

Figure 11–1 Creating New Reports

The following sections will give an overview of Oracle Analytics Publisher. The developer will be able to add
and configure anAdhoc report to OBP using the Oracle Analytics Publisher.

Use Case: The OBP application has a batch framework using which a developer can easily add batch
processes, also known as batch shells, to the application. The batch framework executes all the batch shells
defined in the system as per their configuration. The results of these batch shell executions are stored in the
database. We will be adding a report using Oracle Analytics Publisher for the execution results summary for
batch shells.

11.1 Data Objects for the Report
TheDataModel of the report invokes the database to fetch the data for the report through certain data objects
that we will need to create. The primary data objects needed for the reports are as follows:

Global Temporary Table

You will need to create aGlobal Temporary Table based on the fields required for the report data. This table
should mandatory have the fieldSESSION_ID of NUMBER type. The naming convention followed in OBP for
the global temporary table's name is RPT_<Module_Code>_R<Report_Number>.

For the aforementioned use case, the script for creating the global temporary table would be as shown below.

11 Creating New Reports Using Oracle Analytics Publisher | 159

11.1 Data Objects for the Report

Figure 11–2 Global Temporary Table

Report Record Type

You will need to create a Type object with the fields present in the global temporary table. This type will
represent a single row of data for the report. The naming convention followed in OBP for the report record
type's name is REP_REC_<Report_Id>.

For the aforementioned use case, the script for creating the report record type would be as shown below.

Figure 11–3 Report Record Type

Report Table Type

You will need to create a Type object which will be a table of the previously created report record type. This
type will represent the set of rows of data for the report. The naming convention followed in OBP for the report
table type's name is REC_TAB_<Report_Id>.

For the aforementioned use case, the script for creating the report table type would be as shown below.

160 | Oracle Banking Enterprise Originations Host Extensibility Guide

11.1 Data Objects for the Report

Figure 11–4 Report Table Type

Report DML Function

You will need to create a DML function which will be invoked to populate the previously created global
temporary table with the data required to be displayed in the report. This function can have parameters as per
the developer’s requirements with filtering the data or inserting additional data. The naming convention
followed in OBP for the report DML function's name is AP_DML_<Report_Id>.

For the aforementioned use case, the script for the report DML function would be as shown below.

Figure 11–5 Report DML Function

Report DDL Function

You will need to create a DDL function which will be invoked to fetch data required to be displayed in the
report from the global temporary table and wrap it in the previously created report table type. The naming
convention followed in OBP for the report DDL function's name is AP_DDL_<Report_Id>.

For the aforementioned use case, the script for creating report DDL function would be as shown below.

11 Creating New Reports Using Oracle Analytics Publisher | 161

11.2 Catalog Folder

Figure 11–6 Report DDL Function

Data Model for the Report

Once you have created the data objects for the report in the database, you can start adding and configuring
the report using Oracle Analytics Publisher. Log in to the Oracle Analytics Publisher application and follow
these steps.

You can log in to the Oracle Analytics Publisher application deployed on http: //<IP
ADDRESS><PORT>/xmlpserver/ with the credentials weblogic/weblogic1.

11.2 Catalog Folder
Before creating the data model or the layout for the report, you should create a folder to save the model and
layout. You can find the link for the Catalog tab on the home screen. Click it and create a folder for your report
at an appropriate location.

For the aforementioned use case, you can create a folderPI007 at the location /My Folders/FC Module/Demo
as shown below.

162 | Oracle Banking Enterprise Originations Host Extensibility Guide

11.3 Data Source

Figure 11–7 Catalog Folder

11.3 Data Source
You will need to add the data source from which the data will be fetched to be displayed in the report. The data
source can be a JDBC Connection, JNDI Connection, File, LDAP Connection and so on. You can find the
link for theAdministration tab on the home screen. Click it and choose the appropriate data source connection
type. Enter the required parameter values and validate the connection. Save the data source with an
appropriate name.

For the aforementioned use case, you can add the JDBC Connection data source as show below.

Figure 11–8 Data Source

11.4 Data Model
You will need to create a data model to back the report. This data model represents the report data fetched
using the data objects and formatted into XML data. You can find the link toCreate DataModel on the home
screen of Oracle Analytics Publisher. Click it and follow these steps:

1. Enter an appropriate description for the data model.

2. Choose the previously created data source from the list displayed.

11 Creating New Reports Using Oracle Analytics Publisher | 163

11.4 Data Model

3. Check the Enable Scalable Model option.

4. Check the Include Parameter Tags option.

5. Check the Include Empty Tags for Null Elements option.

6. Check the Include Group List Tags option.

7. You can leave the rest of the options to default.

For the aforementioned use case, you can create data model as shown below.

Figure 11–9 Data Model

Data Set

After creating the data model, you will need to create a data set of the fields required to be displayed in the
report. You can find the link forData Sets on the left side pane of the screen. To create the data set, follow
these steps:

1. In the Create Data Set icon, choose the option Create Data Set from SQL Query.

2. Enter an appropriate name for the data set.

3. Choose the previously created data source from the list displayed.

4. Enter the SQL query which will be used to fetch the data for the report. The results returned should be
of theReport Table Type previously created.

For the aforementioned use case, you can create the data set as shown below.

164 | Oracle Banking Enterprise Originations Host Extensibility Guide

11.4 Data Model

Figure 11–10 Data Set

On click of OK, a data set will be created with all the fields as defined in the previously createdReport Record
Type.

You can group the fields as per the requirements of the report:

1. Select the field on which you want to group and chooseGroup By.

2. After creating a group, you can move fields between the groups.

3. You can also set field which will be used to sort the data displayed in a group.

For the aforementioned use case, you can group the fields as shown below.

Figure 11–11 Group Fields

You can view and edit the XML structure and labels of the report data in theStructure tab in a tabular format.

For the aforementioned use case, the structure would be as shown below:

11 Creating New Reports Using Oracle Analytics Publisher | 165

11.4 Data Model

Figure 11–12 XML Structure and Labels

You can view the actual XML code in theCode tab.

For the aforementioned use case, the XML code would be as shown below.

Figure 11–13 XML Code

Input Parameters

You can define the Input Parameters required by the report in theParameters tab present on the left hand side
pane of the screen. To define input parameters, follow these steps:

1. In theParameters tab, click the icon forAdd Parameter.

2. Enter the name, type, display label and default value for the parameter.

3. Repeat the above steps to define as many parameters as required.

For the aforementioned use case, you can add parameters as shown below:

166 | Oracle Banking Enterprise Originations Host Extensibility Guide

11.5 XML View of Report

Figure 11–14 Add Input Parameters

11.5 XML View of Report
After following the above steps, save the data model in the previously created catalog folder with an
appropriate name. You can view the report without the layout in the XML form by clicking on the icon forXML
View.

In the XML view, you will see input fields for the previously defined input parameters. Enter appropriate values
in those fields and click Run. You will be able to see the XML representation of the report data.

For the aforementioned use case, the XML representation of the report data would be as shown below.

Figure 11–15 XML View of Report

11 Creating New Reports Using Oracle Analytics Publisher | 167

11.6 Layout of the Report

11.6 Layout of the Report
A report needs to be presented in an appropriate format. The format can vary from report to report and client to
client. Oracle Analytics Publisher separates the data model from the layout making it convenient for the
developer.

Anybody familiar with using Microsoft Word or Adobe Acrobat can use the corresponding plug-ins for these
tools to create a layout for a report. You can create a rich layout using these standalone applications with
Oracle Analytics Publisher plug-ins and then upload them to the Oracle Analytics Publisher application for use
in your report.

The Oracle Analytics Publisher application can generate a very basic layout for your report from the data set.
You can download the generated layout, modify it as per your layout requirements and upload it to the Oracle
Analytics Publisher application for use in your report.

The Oracle Analytics Publisher application also allows the user to create a layout on the web. It has a rich set
of tools to with drag and drop features and a ready link to the data set fields. You can create a layout in this
fashion and use it in your report.

You can find the link toAddNew Layout on the right side of the screen. Click it to get the options to create,
generate or upload a layout.

Figure 11–16 Layout of the Report - Create Layout

Choose from theBasic Templates to create a layout from a template. The layout editor screen will open. The
previously created data set fields are present on the left pane of the screen. The toolbar present on top of the
layout has tools to insert Layout Grid, Data Table, Repeating Section, Text Item, List, Image, Page Break,
Page Number, elements.

You can drag and drop the layout and data set elements on to the layout as per your requirements. After
making the required modifications, save the layout and return to the previous screen.

For the aforementioned use case, the layout for the report would be as shown below.

168 | Oracle Banking Enterprise Originations Host Extensibility Guide

11.7 View Report in Oracle Analytics Publisher

Figure 11–17 Layout of the Report - Batch Job Results

11.7 View Report in Oracle Analytics Publisher
After saving theDataModel and Layout, you can view the report in Oracle Analytics Publisher. Click theView
Report link on the top right corner of the screen to open the report screen.

You will be able to see the input fields for the input parameters defined for the report. Enter appropriate values
in these fields and click Apply. The report will be generated and displayed on the screen with the applicable
data returned by the previously createdDataModel and formatted as per the previously created Layout.

For the aforementioned use case, the final report would be as shown below.

Figure 11–18 View Report in Oracle Analytics Publisher

You can export the report inHTML, PDF, Excel, RTF orPowerPoint formats by clicking on the icon forExport
on the right top corner of the screen and choosing the corresponding export option.

11 Creating New Reports Using Oracle Analytics Publisher | 169

11.8 OBP Batch Report Configuration - Define the Batch Reports

11.8 OBP Batch Report Configuration - Define the Batch
Reports
Entries are required in three tables as given below to generate reports during EOD.

insert into FLX_BATCH_JOB_SHELL_MASTER (COD_EOD_PROCESS, TXT_
PROCESS, TXT_PROCESS_NAME, FRQ_PROC, DAT_LAST_RUN, DAT_SCHEDULED_
RUN, TXT_PROC_PARAM, COD_PROC_STATUS, NUM_PROC_ERROR, FLG_RUN_
TODAY, COD_PROC_CATEGORY, FLG_MONTH_END, FLG_MNT_STATUS, COD_MNT_
ACTION, COD_LAST_MNT_MAKERID, COD_LAST_MNT_CHKRID, DAT_LAST_MNT,
CTR_UPDAT_SRLNO, COD_MODULE, DAT_PROC_START, DAT_PROC_END, TXN_KEY,
SERVICE_KEY, NAM_COMPONENT, TYPE_COMPONENT, NAM_DBINSTANCE, RETRY_
COUNTER, NON_RETRY_COUNTER, COD_UNSTREAMED_PROCESS, COD_BRANCH_
GROUP_CODE)
values ('ch_eod_report_shell', 'CASA EOD Reports', 'CASA EOD
Reports', '1', to_date('15-02-2012', 'dd-mm-yyyy'), to_date('15-12-
2007', 'dd-mm-yyyy'), '99', 0, 0, 'Y', 1, 0, 'A', ' ', 'SETUP1',
'SETUP2', to_date('09-02-2002', 'dd-mm-yyyy'), 2, 'CH', to_date
('21-08-2008 09:54:57', 'dd-mm-yyyy hh24:mi:ss'), to_date('28-02-
2011 05:02:41', 'dd-mm-yyyy hh24:mi:ss'), 'DUMMY', 'execute',
'com.ofss.fc.bh.batch.BatchReportShellBean', 'B', 'PROD', 0, 0,
'ch_eod_report_shell', 'BRN_GRP_1');

Cod_proc_category = 1, for EOD; 2, for BOD and 16 for Internal System EOD

Nam_component is the same for all report shells.

Also we are using Branch_Group_Category ='BRN_GRP_1' for all these report shells.

11.9 OBP Batch Report Configuration - Define the Batch
Report Shell

Insert into FLX_BATCH_JOB_SHELL_DEPEND (COD_EOD_PROCESS, COD_REQD_
PROCESS, COD_PROC_CATEGORY, COD_REQD_PROC_CAT, FLG_MNT_STATUS, COD_
MNT_ACTION, COD_LAST_MNT_MAKERID, COD_LAST_MNT_CHKRID, DAT_LAST_
MNT, CTR_UPDAT_SRLNO, COD_BRANCH_GROUP_CODE)
Values ('ch_eod_report_shell', 'dd_eod_action', 1, 1, 'A', ' ',
'SETUP', 'SETUP', to_date('30-06-1995', 'dd-mm-yyyy'),2, 'BRN_GRP_
1');

Here, in the first column is the report shell name and second is the name of the shell after which this shell
should run. So 'ch_bod_report_shell' runs after 'dd_bod_action'. The remaining columns are self explanatory.

COD_PROC_CATEGORY=1 , for EOD; 2, for BOD and 16 for Internal
System EOD
COD_REQD_PROC_CAT=1, for EOD; 2, for BOD and 16 for Internal System
EOD

Also we are using Branch_Group_Category = 'BRN_GRP_1' for all these report shells.

170 | Oracle Banking Enterprise Originations Host Extensibility Guide

11.10 OBP Batch Report Configuration - Define the Batch Report Shell Dependencies

11.10 OBP Batch Report Configuration - Define the Batch
Report Shell Dependencies

Insert into flx_ba_report_ctrl (COD_REPORT_ID, FLG_REP_ADV, COD_
MODULE, NAM_REPORT, TYP_REPORT, FRQ_REPORT, FLG_PRINT, FLG_DELETE,
CTR_REP_COPIES, COD_PRIORITY, COD_ACCESS_LVL, COD_FILEID, BUF_INV_
VAR1, BUF_INV_VAR2, BUF_INV_VAR3, BUF_INV_VAR4, BUF_INV_VAR5, FLG_
MNT_STATUS, COD_MNT_ACTION, COD_LAST_MNT_MAKERID, COD_LAST_MNT_
CHKRID, DAT_LAST_MNT, CTR_UPDAT_SRLNO, FLG_SOURCE, FLG_SPLIT, FLG_
PROD_REP, COD_REPORT_DB_PREFIX, FLG_APPLY_SC, REF_UDF_NO, XPATH,
FLG_REPORT_SERVER)
values ('CH318', 'R', 'CH', 'CASA BALANCE LISTING', 'E', '1', '1',
'0', 1, 0, 0, 10047, ' ', ' ', ' ', ' ', ' ', 'A', ' ', 'PHASE_2',
'PHASE_2', to_date('01-11-1999', 'dd-mm-yyyy'), 2, 'P', 'Y', 'P',
'PROD', '', '', '', 'B');

Entry for each report should be here with typ_report = 'I' for Internal System EOD; 'E' for EOD and 'B' for
BOD.

Currently, for EOD and BOD eod_report_shell and bod_report_shell will take care of all non CASA and TD
EOD and BOD reports respectively.

No separate module specific shell is required during EOD and BOD. That is to mention Entry 3 alone is
sufficient during EOD and BOD categories for any module. However, entries are needed for all three entries
for batch report generation during any other category.

11.11 OBP Batch Report Configuration
This section describes the OBP batch report configuration.

11.11.1 Batch Report Generation for a Branch Group Code
During Batch Process, a report should be generated for all branches linked to the respective Branch Group
Code.

For any Batch Report to make use of the Branch Group Code getting passed by the application, a parameter
'P_COD_BRANCH_GRP' has to be defined in the Data Model.

The Data Model should pass this parameter to the Report Related DDL Function.

The Report Related DML Function filters all branch codes from FLX_BATCH_JOB_RESULTS_FILTERED
that belong to the same Branch Group Code.

11 Creating New Reports Using Oracle Analytics Publisher | 171

11.11 OBP Batch Report Configuration

Figure 11–19 Batch Report Generation for a Branch Group Code

11.11.2 Batch Report Generation Status
At the end of all batch processes BA_REPORT_RESTART gets logged with the generated report status as D
-> Done or F->Failed.

11.11.3 Batch Report Generation Path
The reports (for example, 30th September 2008) will be generated as shown in the host side screen-shot.

Locate these reports at this location in the host server.

/oracle/deployables/batch/08/runarea/rjsout/09/30 which actually is of the format

/config/../<BankCode>/runarea/rjsout/<MM>/<DD>

172 | Oracle Banking Enterprise Originations Host Extensibility Guide

11.12 OBP Adhoc Report Configuration

Figure 11–20 Batch Report Generation Path

11.12 OBP Adhoc Report Configuration
This section describes the OBP adhoc report configuration.

11.12.1 Define the Adhoc Reports
Define the adhoc reports as follows:

Insert into flx_ba_report_ctrl (COD_REPORT_ID, FLG_REP_ADV, COD_
MODULE, NAM_REPORT, TYP_REPORT, FRQ_REPORT, FLG_PRINT, FLG_DELETE,
CTR_REP_COPIES, COD_PRIORITY, COD_ACCESS_LVL, COD_FILEID, BUF_INV_
VAR1, BUF_INV_VAR2, BUF_INV_VAR3, BUF_INV_VAR4, BUF_INV_VAR5, FLG_
MNT_STATUS, COD_MNT_ACTION, COD_LAST_MNT_MAKERID, COD_LAST_MNT_
CHKRID, DAT_LAST_MNT, CTR_UPDAT_SRLNO, FLG_SOURCE, FLG_SPLIT, FLG_
PROD_REP, COD_REPORT_DB_PREFIX, FLG_APPLY_SC, REF_UDF_NO, XPATH,
FILE_DESC, FLG_REPORT_SERVER)
values ('CH318', 'R', 'CH', 'CASA BALANCE LISTING', 'A', '1', '1',
'0', 1, 0, 0, 10047, ' ', ' ', ' ', ' ', ' ', 'A', ' ', 'PHASE_2',
'PHASE_2', to_date('01-11-1999', 'dd-mm-yyyy'), 2, 'P', 'Y', 'P',
'PROD', '', '', '', 'Savings Listing Reports', 'B');

11 Creating New Reports Using Oracle Analytics Publisher | 173

11.12 OBP Adhoc Report Configuration

11.12.2 Define the Adhoc Report Parameters
Define the adhoc report parameters as follows:

INSERT INTO flx_ba_report_params (COD_REPORT_ID,FLG_REP_ADV,COD_
SERIAL,NAM_PROMPT, COD_FLD_TYP,LEN_FLD,FLG_DELETE,DAT_LAST_MNT,NAM_
VAL_ROUTINE,REQD_DESC) VALUES ('CH318','R',1,'Branch
Code',0,0,'N','01-NOV-99','','Y')
/
INSERT INTO flx_ba_report_params (COD_REPORT_ID,FLG_REP_ADV,COD_
SERIAL,NAM_PROMPT, COD_FLD_TYP,LEN_FLD,FLG_DELETE,DAT_LAST_MNT,NAM_
VAL_ROUTINE,REQD_DESC) VALUES ('CH318','R',2,'Product
Code',0,0,'N','01-NOV-99','','Y')
/
INSERT INTO flx_ba_report_params (COD_REPORT_ID,FLG_REP_ADV,COD_
SERIAL,NAM_PROMPT, COD_FLD_TYP,LEN_FLD,FLG_DELETE,DAT_LAST_MNT,NAM_
VAL_ROUTINE,REQD_DESC) VALUES ('CH318','R',3,'From Date(DD-MMM-
YYYY)',8,0,'N','01-NOV-99','','Y')
/

Also COD_FLD_TYP = 8 will ensures the host side date format validations.

COD_FLD_TYP = 0 is for string type parameters.

Corresponding to each of the above sequence of parameters appearing in screen, a mandatory parameter
'FUNC_PARAM<Parameter Sequence Number>' should be defined in Oracle Analytics Publisher Data
Model. So the input parameter 'FUNC_PARAM2' defined in data model should correspond to Product Code
as defined above.

11.12.3 Define the Adhoc Reports to be listed in Screen
Define the group name as follows:

For Adhoc Report, column FILE_DESC of report master table FLX_BA_REPORT_CTRL contains the name
of the group under which the report will be listed in 7775 screen.

11.12.4 Adding Screen Tab for Report Module
For adding a Screen Tab do the following:

com.ofss.fc.ui.view.brop.jar@
public_
html/com/ofss/fc/ui/view/brop/reportRequest/form/ReportRequest.jsff
<af:commandNavigationItem partialSubmit="true" text="#{rb7775.LBL_
Reconciliation}"
binding="#{ReportRequest.cni11}" id="cni11" immediate="true"
actionListener="#{ReportRequest.processMode}" selected="false">
<f:attribute name="mode" value="Reconciliation"/>
</af:commandNavigationItem>

com.ofss.fc.ui.view.brop.jar@
/com/ofss/fc/ui/view/brop/reportRequest/backing/ReportRequest.java

174 | Oracle Banking Enterprise Originations Host Extensibility Guide

11.13 Adhoc Report Generation – Screen 7775

private RichCommandNavigationItem cni11;
Add following accessors:-
public void setCni11(RichCommandNavigationItem cni11) {
this.cni11 = cni11;
}
public RichCommandNavigationItem getCni11() {
return cni11;
}

Also modify the selection tab highlighting portion of the code.

com.ofss.fc.ui.view.brop.jar@

/com/ofss/fc/ui/view/brop/reportRequest/rb/ReportRequest_en.properties

LBL_Reconciliation = Reconciliation

11.13 Adhoc Report Generation – Screen 7775
The adhoc report can be generated using the following screen:

Figure 11–21 Adhoc Report Generation - Report Request

11 Creating New Reports Using Oracle Analytics Publisher | 175

11.14 Adhoc Report Viewing – Screen 7779

Figure 11–22 Adhoc Report Generation - Report Generated

On filling the parameters and clicking on 'Generate' the report request gets successfully posted.

At the end of Adhoc report generation, RJS_REQUESTS gets logged with the generated report status as D ->
Done, F-> Failed.

11.14 Adhoc Report Viewing – Screen 7779
The adhoc report can be viewed using the following screen:

176 | Oracle Banking Enterprise Originations Host Extensibility Guide

11.14 Adhoc Report Viewing – Screen 7779

Figure 11–23 Advice Report

On selecting the correct user id that generated the report we get the reports generated by that user.

Now sort the Transaction Number (right most column) in the descending order.

Select the top record and click 'View Report'.

11 Creating New Reports Using Oracle Analytics Publisher | 177

11.14 Adhoc Report Viewing – Screen 7779

Figure 11–24 View Generated Adhoc Report

The report is rendered in the front end.

178 | Oracle Banking Enterprise Originations Host Extensibility Guide

12 Security Customizations

OBP comprising of several modules has to interface with various systems in an enterprise to transfer or share
data which is generated during business activity that takes place during teller operations or processing. While
managing the transactions that are within OBP's domain, it is needed to consider security and identity
management and the uniform way in which these services need to be consumed by all applications in the
enterprise.

This is possible if these capabilities can be externalized from the application itself and are implemented within
products that are specialized to handle such services. Examples of these services include authentication
against an enterprise identity-store, creating permissions and role-based authorization model that controls
access to not only the components of the application, but also the data that is visible to the user based on
fine-grained entitlements.

The following security functions are provided with the extensibility features:

n Attributes participating in access policy rules

n Attributes participating in fraud assertion rules

n Attributes participating in matrix-based approval checks

n Account validator

n Customer validator

n Business unit validator

n Adding validators

n Customizing user search

n Customizing of a ‘Send OTP | Validate OTP’ logic

n Customizing Role Evaluation

n Customizing Limit Exclusions

n Adding approval checks

12 Security Customizations | 179

Figure 12–1 Security Customizations Interface

n Oracle Identity Manager (OIM) is used for managing user provisioning.

n Oracle Access Manager (OAM) is used for managing declarative authentication and SSO.

n Oracle Platform Security Services (OPSS) is used for runtime evaluation of authn / authz.

n Oracle Adaptive Access Manager (OAAM)/Oracle Adaptive Risk Manager (OARM) is used for step-up
authentication and fraud management.

n Authorization Policy Manager (APM) is used to manage access policy definitions.

n SM502- Policy Management screen is used to manage access policy definitions

n Oracle Internet Directory (OID) is used as the identity/policy store.

A high-level security use case has the following access checks and assertions.

180 | Oracle Banking Enterprise Originations Host Extensibility Guide

12.1 OPSS Access Policies / Matrix Auth – Adding Attributes

Figure 12–2 Security Use Case with Access Checks and Assertions

12.1 OPSS Access Policies / Matrix Auth – Adding Attributes
OBP uses OPSS to assert role-based access policies. Access policies are rules-based to give more
flexibility.

Example of an access policy rule:

Grant
Role = RetailBranchOperationsExecutive
Service=com.ofss.fc.app.dda.service.transaction.DemandDepositCashT
ransactionService.depositCash
Action = perform
IF DepositCash_IsEmployeeAccount=false AND DepositCash_
IsRestrictedAccount=false

In the above example, the following facts (attributes) make up the access policy rule:

DepositCash_IsEmployeeAccount
DepositCash_IsRestrictedAccount

The security framework allows for addition to the facts that can be used in rules. The steps to do this are
mentioned in the next section.

12.1.1 Steps
Following steps are needed to add an extra attribute to an access policy rule.

You can use SM500 screen or use ‘PolicyStoreSetup’ -> script ‘seedFreshPolicyStore.sh’.

12 Security Customizations | 181

12.1 OPSS Access Policies / Matrix Auth – Adding Attributes

Below are the steps to use consulting atributes in ‘com.ofss.fc.approval.lendingspi_confirmstructuresolution’
routing rule:

1. Add the attribute name for service_id in SM500:

com.ofss.fc.appx.origination.service.lending.core.application.LendingApplicationServiceSpi.confirmS
tructureSolution,AllowedPolicyAttributes,LendingStructureSolution_
IsTaskIncludesSecuredProduct,N,2/1

a. Search for serviceId
‘com.ofss.fc.appx.origination.service.lending.core.application.LendingApplicationServiceSpi.c
onfirmStructureSolution’ in SM500

Figure 12–3 Add Attributes Name for Service ID

b. Add attribute name ‘LendingStructureSolution_IsTaskIncludesSecuredProduct’ with
appropriate datatype in ‘allowed policy attributes’ under ‘Service Attributes’ tab in SM500 as
shown below:

182 | Oracle Banking Enterprise Originations Host Extensibility Guide

12.1 OPSS Access Policies / Matrix Auth – Adding Attributes

Figure 12–4 Add Service Attributes in SM500

2. Define the attribute in Constraint Attribute Config with associated adapter to fetch attribute value.

Figure 12–5 Constraint Attribute Config with Associated Adapter

3. Add derivation logic to set the attribute value in Adapter that is mapped in config.

Develop custom adapter to retrieve attribute value. Attribute should be structured along similar lines as
the other adapters used for the same purpose.

12 Security Customizations | 183

12.1 OPSS Access Policies / Matrix Auth – Adding Attributes

Example:

Attribute - LendingStructureSolution_
IsTaskIncludesSecuredProduct
Adapter -
public
com.ofss.fc.app.adapter.impl.sms.FacilityApprovalDataMatrixAd
apter {
public Boolean getIsTaskIncludesSecuredProduct() {
if (facilityApprovalDataDTO != null &&
facilityApprovalDataDTO.getIsTaskIncludesSecuredProduct() !=
null)
return facilityApprovalDataDTO.getIsTaskIncludesSecuredProduct
();
else
return false;
} }

Note

The naming convention of the attribute should be as follows:

The first part of the attribute till the '-' delimiter identifies the
transaction. The remaining part with CamelCase is prefixed with a 'get'
to form the method in the adapter.

4. Add entry in ConstraintAttributeHelper.properties to link the attribute to the adapter.

Public final String LendingStructureSolution_
IsTaskIncludesSecuredProduct =
"com.ofss.fc.app.adapter.impl.sms.FacilityApprovalDataMatrixA
dapter";

5. Add/Modify access policy/rule using SM502 screen or using ‘refreshMatrixAuthPolicies.sh’ script
available in ‘PolicyStoreSetup’ utility.

12.1.1.1 Example of Matrix_auth conditional rule
After severity configuration in SM500, open SM502 screen to create Matrix_auth conditional rule for
ServiceID.

184 | Oracle Banking Enterprise Originations Host Extensibility Guide

12.1 OPSS Access Policies / Matrix Auth – Adding Attributes

1. In SM502, select ResourceType as ‘SERVICE’ and in Resource add ‘ServiceID’.and then press Enter.

Figure 12–6 Select Resource Type and Add Service ID

2. Now create policy for ‘PERFORM_WITHOUT_APPROVALS’ for the resource.

Under PolicyTable, click on Add, and select following details:

n EFFECT: GRANT

n ACTION: PERFORM_WITHOUT_APPROVALS

n ROLES: Administrators

12 Security Customizations | 185

12.1 OPSS Access Policies / Matrix Auth – Adding Attributes

Figure 12–7 Add PolicyTable Details

3. Then, add condition using attribute ‘LendingStructureSolution_Margin’.

Condition:

If LendingStructureSolution_Margin<=5000 , then PerformWithOutApprovals

else perform,

So, if LendingStructureSolution_Margin>5000 then Transaction will go for Approval.

186 | Oracle Banking Enterprise Originations Host Extensibility Guide

12.2 OAAM Fraud Assertions – Adding Attributes

Figure 12–8 Add Condition

Note

The only difference between the policy semantics in matrix_auth and
access policy is the ‘Action’. [‘perform’ versus
‘performWithoutApprovals’]

12.2 OAAM Fraud Assertions – Adding Attributes
OBP uses OAAM to assert fraud policies consisting of rules to identify potentially fraudulent transactions.

Attributes used in fraud identification rules:

payee_id, account_number
The security framework allows for addition to this list of facts. The steps to do this are mentioned in the next
section.

12.2.1 Steps
Following steps are needed to add an attribute to an existing OAAM transaction:

1. Add the attribute under ‘AllowedPolicyAttributes’ against the particular resource.

2. Add attribute in OID under the ‘Attributes’ entry.

3. Develop custom adapter to retrieve attribute value.

4. Add entry in ConstraintAttributeHelper.properties to link the attribute to the adapter.

The above steps are exactly the same as mentioned in the previous section.

12 Security Customizations | 187

12.2 OAAM Fraud Assertions – Adding Attributes

1. Add seed data in the following tables to persist the mapping between OID attributes and OAAM
attributes.

flx_sm_fraud_txn_attributes (stores OAAM transaction key to OAAM attribute mapping) and

flx_sm_fraud_assert_attributes (stores OBP attributeName - oaamAttributeName mapping.

Example -
insert into Flx_Sm_Fraud_Txn_Attributes (TRANSACTION_KEY,
ATTRIBUTE_NAME)
values ('payment', 'is_2fa_completed')
/
insert into flx_sm_fraud_assert_attributes (ATTRIBUTE_KEY,
FRAUD_ATTRIBUTE_NAME)
values (OutgoiOBPaymentService_Is2FACompleted', 'is_2fa_
completed')
/

2. Add/Modify fraud rules in OAAM to use the extra attribute

Figure 12–9 Add or Modify Fraud Rules in OAAM - Data Tab

188 | Oracle Banking Enterprise Originations Host Extensibility Guide

12.3 Security Validators

Figure 12–10 Add or Modify Fraud Rules in OAAM - Conditions Tab

12.3 Security Validators
In addition to OPSS access policies, there are additional validators that perform security checks. The sole
purpose of these validators was to give hooks to enable site specific security logic that would be complicated
enough and hence cannot be provisioned as rules.

Note

These additional validators come into effect only when the following
property is set.

APPLICATION_SECURITY_VALIDATOR=true

The role, channel, service and the attributes available in the execution context are passed to the validators.

The validators implement the interface
com.ofss.fc.app.adapter.impl.sms.validator.IExtendableApplicationValidator

There are three types of security-validation categories:

n Customer validators

n Account validators

n Business unit validators

There can be multiple validator classes contributing to each individual category.

The package structure of the validators is required to be:

'com.ofss.fc.app.adapter.impl.sms.validator'

12 Security Customizations | 189

12.3 Security Validators

12.3.1 Customer Validators
This validator returns a Boolean signifying whether the logged-in user can perform a transaction on the
customer.

Step 1
Add property in ApplicationValidators.properties

com.ofss.fc.app.dda.service.account.core.DDAInquiryApplicationServ
ice.fetchBasicDetails.CustomerValidators=RestrictedAccountApplicat
ionValidator,EmployeeAccountApplicationValidator

Step 2
Develop custom validator along the lines of existing adapters.

12.3.2 Account Validators
This validator returns a Boolean signifying whether the logged-in user can perform a transaction on the
account.

Step 1
Add property in ApplicationValidators.properties

com.ofss.fc.app.dda.service.account.core.DDAInquiryApplicationServ
ice.fetchBasicDetails.AccountValidators=RestrictedAccountApplicati
onValidator,EmployeeAccountApplicationValidator

Step 2
Develop custom validator along the lines of existing adapters.

12.3.3 Business Unit Validators
This validator returns a Boolean signifying whether the logged-in user can perform a transaction on the
business unit.

Step 1
Add property in ApplicationValidators.properties

APPLY_BUSINESS_UNIT_VALIDATION_TO_ALL_SERVICES=false
com.ofss.fc.app.dda.service.account.core.DDAInquiryApplicationServ
ice.fetchBasicDetails.BusinessUnitValidators=BusinessUnitApplicati
onValidator
BusinessUnitValidators=GlobalBusinessUnitApplicationValidator

Step 2
Develop custom validator along the lines of existing adapters.

Note

BusinessUnit validation can be global, in which case the following
property is set.

APPLY_BUSINESS_UNIT_VALIDATION_TO_ALL_
SERVICES=true

190 | Oracle Banking Enterprise Originations Host Extensibility Guide

12.4 Customizing User Search

12.4 Customizing User Search
OBP application services use SessionContext as an input parameter to set the context of the user interacting
with the system. The session-context is populated out of the user's details in OID. Across implementations,
the user metadata (objectclasses, attributes) is expected to be different resulting in the requirements to have
a custom user search capability.

The security framework provides an extension point to inject a custom search. The steps are given in the next
section.

12.4.1 Steps
SecurityConstants.properties contains attributes that enable custom user searches.

Step 1
Add properties in SecurityConstants.properties.

CUSTOM_SEARCH_
CLASS=com.ofss.fc.domain.ixface.sms.service.utils.CustomUserSearch
Adapter.retrieveUserUsingExtendableAttributes
CUSTOM_SEARCH_PARAM=nagactualaccessid

Step 2
Develop custom user search adapter.

12.5 Customizing One-Time-Password (OTP) Processing
Logic
OBP uses OAAM for step-up authentication and fraud assertions. Customer is asked to enter a one-time
password (OTP) if OAAM suspects the transaction to be fraudulent. The logic to send or validate an OTP is
implemented using a custom hook. Details of the extension are given in the next section.

12.5.1 Steps
OAAM.properties contains a property that provides an extension for second factor password generation /
dispatch.

Steps:

1. Add property for the class implementing 2FA in OAAM.properties

TWO_FACTOR_AUTH_
SERVICE=com.ofss.fc.domain.ixface.oaam.TwoFactorAuthService

2. Develop custom class.

12.6 Customizing Role Evaluation
OPSS can be configured to add a user in multiple groups (enterprise roles), as a result of which a user can
have multiple application roles. OBP uses the most significant role amongst this list to query the user's
severity configuration.

12 Security Customizations | 191

12.7 Customizing Limits Exclusions

The default role-evaluator can be overridden to provide custom role evaluation logic. The steps to do this are
given in the next section.

12.6.1 Steps
SecurityConstants.properties contains an attribute that provides an extension for a custom role evaluator.

Step 1
Replace property value in SecurityConstants.properties

ROLE_
EVALUATOR=com.ofss.fc.domain.sms.entity.user.roleEvaluationCriteri
a.SimpleRoleEvaluator

Step 2
Develop custom role evaluator.

Currently, the default role evaluator returns the role that has the maximum limits for the service.

12.7 Customizing Limits Exclusions
OBP application services evaluate transaction limits for various services. The assertion logic excludes limits
checks for certain conditions. Example, if the customer is transferring funds to his own accounts. Banks have
site-specific requirements to exclude transactions from limits checks. The security framework provides an
extension point to inject a custom limits exclusions adapter. The steps are given in the next section.

12.7.1 Steps
LimitsExclusions.properties contains a property that enables custom limit exclusions logic for a particular
service.

Step 1
Add properties in LimitsExclusions.properties

EXCLUSION_PACKAGE_NAME=com.ofss.fc.app.adapter.impl.sms.exclusions
com.ofss.fc.app.dda.service.transaction.DemandDepositFundsTransfer
Service.
transferFundsToBeneficiaries=TransferFundsExclusionValidator

Step 2
Develop custom limits exclusions adapter.

12.8 Customizing Business Rules
BPEL approval process business rules can be configured and it is based on input authorizations raised during
transaction processing at OBP host. The steps for configuring the business rules of the approvals are given in
the below section.

12.8.1 Steps to Update the Business Rules by Browser
Following is the Rules setup to be done in SOA Composer:

192 | Oracle Banking Enterprise Originations Host Extensibility Guide

12.8 Customizing Business Rules

1. Log in to SOA Composer application of the OBP.

Figure 12–11 Log in to SOA Composer Application screen

2. Search rules file with .rules extension in search box.

Ex: Search ‘HT_SubmissionSpi_ConfirmSubmissionRules.rules’ in search box.

12 Security Customizations | 193

12.8 Customizing Business Rules

Figure 12–12 Search Rules file

194 | Oracle Banking Enterprise Originations Host Extensibility Guide

12.8 Customizing Business Rules

Figure 12–13 Search Rules file -View

3. Select
‘com.ofss.fc.approval.genericrulesapprovalspi.executeapprovalrulesorigcore\SOA\oracle\rules\HT_
SubmissionSpi_ConfirmSubmissionRules.rules’ composite to configure routing rules.

12 Security Customizations | 195

12.8 Customizing Business Rules

Figure 12–14 Composite to Configure Routing Rules

4. Select the stages of approval where the condition in rule is required to be updated.

To edit rules file, click on the ‘EDIT Session’ button and then select RuleID under ‘common_ruleset’.

In the below case, select ‘ST1Rule2’ and then, add new condition using ‘Add Pattern’ option.

196 | Oracle Banking Enterprise Originations Host Extensibility Guide

12.8 Customizing Business Rules

Figure 12–15 Stages of Approval

5. On clicking the Add Pattern, select fact type from drop down and then select payloadType.

Ex: select ‘HTSubmissionSpiConfirmSubmissionPayloadType’ from drop down as shown below:

12 Security Customizations | 197

12.8 Customizing Business Rules

Figure 12–16 Add pattern-Submission Payload Type

6. After stage selection, select the specific rule where the condition needs to be updated. The existing
condition can be updated or the new test condition (simple/variable) can be added. You can add new
test using below option.

198 | Oracle Banking Enterprise Originations Host Extensibility Guide

12.8 Customizing Business Rules

Figure 12–17 Add New Test

7. After selection of the test condition, the new expression row appears where the variable, the operator
and the expression value can be selected.

On selection of the search button next to the variable select box, the condition browser opens where
the specific task can be selected.

Select 'fact' in left side expression with appropriate value on right side.

12 Security Customizations | 199

12.8 Customizing Business Rules

Figure 12–18 Select Fact with Appropriate Value

8. If you want to assign to a particular group then use below function:

createParticipantFromGroups("ApprovalGroup2")

200 | Oracle Banking Enterprise Originations Host Extensibility Guide

12.8 Customizing Business Rules

Figure 12–19 Create Participant From Group

9. Validate rules file and then save all changes and publish.

12 Security Customizations | 201

12.8 Customizing Business Rules

Figure 12–20 Validate Rules File

12.8.2 Steps to Update the Business Rules in JDeveloper
Following are the steps to update the business rules in JDeveloper.

Step 1
Configure the JDeveloper in the customization option and the particular process jar import as the SOA project
in the customizable mode. The details of this step are explained in the Oracle Banking Enterprise Originations
SOA Extensibility Guide in the SOA Customization section.

Step 2
Expand the Business Rules which are inside oracle folder of your SOA project. You will see two .rules files in
it. One will be <<HumanTaskName>>Rules.rules file and the other will be
<<HumanTaskName>>RulesBase.rules file. Double Click and open the <<HumanTaskName>>Rules.rules
file. The existing approval stages and rulesets will be available in the file.

202 | Oracle Banking Enterprise Originations Host Extensibility Guide

12.8 Customizing Business Rules

Figure 12–21 Expand Business Rules

Step 3
Create a new rule in the format 'ST<Stage Number>_Rule<Rule Number>' by clicking the Create button in
the Rulesets. The new rules/decision table can be added to a stage. Populate the rule with the conditions in 'if'
and 'then' block.

12 Security Customizations | 203

12.8 Customizing Business Rules

Figure 12–22 Create New Rule

Step 4
In the exiting stage, existing rule can also be added or modified.

204 | Oracle Banking Enterprise Originations Host Extensibility Guide

12.8 Customizing Business Rules

Figure 12–23 Existing Rule

Step 5
Change the participant or approval group by editing below function.

12 Security Customizations | 205

12.8 Customizing Business Rules

Figure 12–24 Change the approval group

Step 6
Deploy the project jar as explained in the Oracle Banking Enterprise Originations SOA Extensibility Guide in
the SOA Customization section.

Note

Make sure to activate rules which have to be executed by editing
properties of each rules.

206 | Oracle Banking Enterprise Originations Host Extensibility Guide

13 Facts and Rules Configuration

This chapter explains the facts and rules configuration details.

13.1 Facts
Fact (in an abstract way) is something which is a reality or which holds true at a given point of time. Business
rules are made up of facts.

A fact can be classified in two ways:

n Literal Fact - Any number, text or other information that represents a value. It is a fixed value. For
example, 100, 2.95, "Mumbai".

n Variable Fact - A fact whose value keeps changing over a period of time For example, Account
Balance, Product Type.

For example, If a customer maintains an Average Quarterly Balance of Rs.10,000 then waive off his quarterly
account maintenance fees. Here, the Average Quarterly Balance is a variable fact while the Rs.10,000 is a
literal fact.

13.1.1 Type of Facts
There are two types of facts:

n Direct Facts with input name value pair

n Derived Facts

Services will be exposed for various operations on the facts. These services are broadly classified into two
types:

n Fact Inquiry Service

n Fact Derivation Service

For deriving the fact value, different type of datasource can be used:

n Java DataSource - Derivation from Java class

n JPQL DataSource - JPQL Query column

n JDBC DataSource - SQL Query column

n DbFunction DataSource - Derivation from database function

Fact Definition can be further categorized into:

n Fact Value Definition - Definition to Derive Fact Value. It is used mostly in Rule Execution.

n Fact Enum Definition - Definition to Derive Permissible values for a fact. It is used mostly in Rule
Creation.

13 Facts and Rules Configuration | 207

13.1 Facts

13.1.2 Facts Vocabulary
Facts Vocabulary is a list or collection of all facts pertaining to a specific field or domain. A standard
vocabulary of facts aids users in defining their business rules. For example, the Facts Vocabulary of the
Banking domain can contain common and familiar facts such as Account Balance, Customer Type, Product
Type, Loan-To-Value Ratio. The Facts Vocabulary of the Cards domain may contain common facts such as
Total Credit Limit, Available Credit Limit, Available Cash Limit.

A vocabulary is defined for variable facts. Each fact has a definition and can have source information.

Definition

The fact definition indicates common properties of the fact such as its name, its data type, which domain,
domain category and group it belongs to, key for retrieving value and a brief description.

Variable facts would be defined for a domain and a domain category. Domain categories are the sub-systems
inside a domain. For example, Lending, Term Deposits, Demand Deposits are the categories of Banking
domain. There are some variable facts which would be common across all the categories in a given domain.
For example, Customer and Bank data is common for all the categories of Banking domain. Such facts can be
classified under a special category called "Global".

The facts are further categorized under various groups. One fact can belong to one or more Groups. For
example, In a Banking domain, Customer Type, Birth Date, Gender are Global facts belonging to the group
Individual Customer Details. Account Balance, Account Opening Date are facts in Lending category
belonging to the group Account Details. Loan-to-value (LTV) ratio, Sanctioned Amount are Facts in Lending
category and belong to multiple groups such as Consumer Loan, Home Loan, Agriculture Loan. There are
some variable facts which do not really fall into any specific group, such facts are classified under a special
group called "Others".

A variable fact value can be received as input from the consumer of eRules in the form of key-value pair, the
key here is defined as RetrievalKey. The fact will also have a data source for value derivation in case the fact
value is not an input.

Some variable facts can have a permissible list of values defined and the rule creator will be restricted to use
only those values which are defined in the permissible list of a given fact. All facts will have a FactValueType
defined as eitherEnumerated (indicates that the fact has a permissible list of values) orOpenEnded (indicates
that the fact value is a free text). For facts with FactValueType as Enumerated, data source information will
be defined in the vocabulary to derive the list of values.

Variable facts will have a grouping based on BusinessDataType. For example, Variable facts like Transaction
Amount, Sanctioned Amount, and Disbursed Amount can be grouped under "Amount". Variable facts like
Available Balance, Book Balance belong to "Balance" BusinessType and so on.

These BusinessDataType will in turn have PrimitiveDataType. For example, Amount and Balance will have
PrimitiveDataType as double.

With the help of BusinessDataType grouping a list of facts belonging to a particular group can be displayed for
user selection while defining rules, rate charts, policies and so on. During actual rule execution the respective
PrimitiveDataType (that is, int, double, String and so on) of the BusinessDataType will be used.

Literal facts will only have aPrimitiveDatatype.

Source

Some facts can be derived, if they are not received as input. Also associated with some facts is a list of
permissible values for the fact at the time of rule/policy definition. All these information forms the part of
source data. The Fact Derivation layer is responsible for deriving the value of a fact and the list of permissible
values for the fact based on source information defined in the vocabulary.

208 | Oracle Banking Enterprise Originations Host Extensibility Guide

13.1 Facts

Deriving Enumeration (applicable list of values) for a Fact

A Variable fact can hold any value at a given point of time. But some can have a standard set of applicable
values defined and the value held by such facts would be always within the range of this list of values.

For example, Account Balance as a variable fact can hold any value at a given point of time, a set of values
cannot be defined for such facts. Hence, no list of permissible values will be defined for Account Balance.
However, the variable fact Customer Gender can have only one of two possible values namely - Male or
Female.

While defining the rules, the permissible list of values will be derived for such facts and user selection will be
restricted to this list.

Deriving Value for a Fact

During rule execution, a set of fact information will be sent by the consumer of eRules in the form of key-value
pair. But this might not be a complete set of fact information required for executing pricing rules. Hence some
facts will have to be derived if they are not received as input.

During rule execution, the required facts would be determined, value will be fetched from RetrievalKey of the
fact if received as input else the value will be derived.

13.1.3 Generation of Facts using Eclipse Plug-in
The fact objects can be generated either by populating the database tables directly or by using the eclipse
plug-in. This plug-in is created for fact generation purpose in OBP application.

A local host server needs to be configured in eclipse before processing for configuration of the fact plug-in. For
fact generation purpose, the following steps need to be followed.

Get the Fact Plugin from the development team.

Put the latest fact generation plugin (com.ofss.fc.util.plugin.fact_x.x.x.jar) in the plug-in folder of eclipse.

Restart Eclipse

13 Facts and Rules Configuration | 209

13.1 Facts

1. In eclipse, go to Window -> Preferences.

Figure 13–1 Select Window Preferences

2. Now in Preferences Window, go toOBP Plugin Development -> Fact.

210 | Oracle Banking Enterprise Originations Host Extensibility Guide

13.1 Facts

Figure 13–2 Window Preferences - OBP Plugin Development

3. Enter the values as mentioned:

n Application Server URL: Local Host Server Listener URL

Example: http: //localhost:9090/com.ofss.fc.channel.branch/HTTPListener

n Presentation Server URL: Token Generator Application URL

Example: http: //127.0.0.1:8001/TokenGenerator/HTTPListener

13 Facts and Rules Configuration | 211

13.1 Facts

If using the plug-in in local eclipse workspace, it will not be used, but a value must be provided,
you can use it from example value.

For security configured environment, it will be used, and then it should be provided properly.

n Bank Code: Bank code (Example: 08)

n Branch Code: Branch Code (Example: 089999)

n User Id: username (Example: ofssuser)

n Password: Password (Example: welcome1)

Figure 13–3 Enter the Preferences Fact values

212 | Oracle Banking Enterprise Originations Host Extensibility Guide

13.1 Facts

4. Now click Apply, and then click Ok.

5. Open Fact.properties and modify:

n aggregateCodeFilePath: The location of host workspace.

n sourceFilePath: The location of src directory of com.ofss.fc.fact project.

Figure 13–4 Fact Properties - aggregateCodeFilePath

13 Facts and Rules Configuration | 213

13.1 Facts

Figure 13–5 Fact Properties - sourceFilePath

6. Now start the Host server.

7. In eclipse, go to Window -> Open Perspective -> Other.

214 | Oracle Banking Enterprise Originations Host Extensibility Guide

13.1 Facts

Figure 13–6 Start Host Server

8. Now in Open Perspective window select Fact.

9. Click Ok.

13 Facts and Rules Configuration | 215

13.1 Facts

Figure 13–7 Select Open Perspective value

It will open Fact Explorer perspective, where Fact Vocabulary is available.

216 | Oracle Banking Enterprise Originations Host Extensibility Guide

13.1 Facts

Figure 13–8 Fact Explorer

10. Now refresh and expand Fact Vocabulary. Expanding Fact Vocabulary will show theDomain names.

13 Facts and Rules Configuration | 217

13.1 Facts

Figure 13–9 Fact Vocabulary

Each Domain contains its Domain Category names.

218 | Oracle Banking Enterprise Originations Host Extensibility Guide

13.1 Facts

Figure 13–10 Domain Category

Each Domain category contain its Fact Groups

13 Facts and Rules Configuration | 219

13.1 Facts

Figure 13–11 Fact Groups

Each Fact Groups contains its Facts.

220 | Oracle Banking Enterprise Originations Host Extensibility Guide

13.1 Facts

Figure 13–12 Facts

11. To see the details of any fact, just double-click it. The details will be shown in a fact window containing
some tabs. Move to each tab to show the details.

13 Facts and Rules Configuration | 221

13.1 Facts

Figure 13–13 Business Definition Tab

Figure 13–14 Value Definition Tab

222 | Oracle Banking Enterprise Originations Host Extensibility Guide

13.1 Facts

Figure 13–15 Enum Definition Tab

13 Facts and Rules Configuration | 223

13.1 Facts

Figure 13–16 Aggregrate Definition Tab

224 | Oracle Banking Enterprise Originations Host Extensibility Guide

13.1 Facts

Figure 13–17 Aggregate File Tab

12. CreatingNew Fact: Right-click any domain Category in which Fact is to be created. Go to
Maintenance -> Add.

13 Facts and Rules Configuration | 225

13.1 Facts

Figure 13–18 Creating New Fact - Add

13. Enter required details for the facts in the new fact window.

All fields of Business definition tab are required for creation of any fact.

Fields of other tabs may be or may not be required. It depends on the fact to be created.

226 | Oracle Banking Enterprise Originations Host Extensibility Guide

13.1 Facts

Figure 13–19 Creating New Fact - Fact Business Definition

13 Facts and Rules Configuration | 227

13.1 Facts

Figure 13–20 Creating New Fact - Domain Group

14. Enter the values in the fields and press CTRL+S, click Yes to save and fact will be created.

Figure 13–21 Saving New Fact

228 | Oracle Banking Enterprise Originations Host Extensibility Guide

13.1 Facts

Figure 13–22 Saving New Fact - Fact Added

15. Modification of Existing Fact: To modify an existing fact, right-click the fact -> Maintenance -> Modify.

It opens the fact details in editable mode. Change whatever required and then save it using
'CTLRL+S'.

Fact Perspective also provide following facilities:

n Maintenance Operations on Fact

n Add

n Modify

n Inquire

n Fact Derivation Test

n Fact Value Derivation Test

n Fact Enum Derivation Test

n Fact Import - Import Fact from File Store to Database store

n Fact Export - Export Fact from Database store to File store.

13.1.4 Object Facts
Apart from the normal facts that have to be maintained explicitly, there is a way to define an object as a fact.
The idea behind having object fact is to ease the fact definition phase when a particular class holds maximum
attributes that are likely to be used in a given rule along the execution path. The advantages are as follows:

n No need of having individual fact definitions for each of the attribute in the class.

n The entire class can be made an object fact and the fact derivation takes the responsibility of scanning
through this class object for fact value.

n The caller module will have the object already loaded in most of the scenarios.

n Ease of passing the facts through fact context, no need to remember the fact IDs of all the facts to a
granular level. Once the parent fact is passed in the fact context with the class name as the fact id, the
attributes are automatically scanned for the respective values as required.

Designate a class as Object Fact

To make a class an object fact, an entry for it needs to be made in the table: "flx_fa_object_facts_b".

13 Facts and Rules Configuration | 229

13.1 Facts

Figure 13–23 Designate Class as Object Fact

Object Fact in UI

The usage of the object fact will be same as any other fact in the UI.

230 | Oracle Banking Enterprise Originations Host Extensibility Guide

13.1 Facts

Figure 13–24 Object Fact in UI

Fact definitions for Object Fact

Building the fact definitions for an object fact is done as follows:

1. Once a class is designated as an object fact, it will be looked up at the time of loading the fact
vocabulary.

2. The individual attribute access methods (getters or Boolean access methods that is, ones that start
with "is") will be scanned to get the name of the attributes.

3. Once the attribute names and their data types are obtained, the FactBusinessDefinition object is
created for it.

4. A variable fact object is also created and registered in the fact registry on the host.

5. The step 3 and 4 will be recursive, done for all the nested objects with the object fact till the leaf fact is
found (that is, the one that can be used in the rule for instance data type could be any Java data types
like String or Integer, or the OBP data types like Money or Duration)

13 Facts and Rules Configuration | 231

13.2 Business Rules

13.2 Business Rules
Business Rules are defined for improving agility and for implementing business policy changes. This agility,
meaning fast time to market, is realized by reducing the latency from approved business policy changes to
production deployment to near zero time. In addition to agility improvements, Business Rules development
also requires far fewer resources for implementing business policy changes. This means that Business Rules
not only provides agility, it also provides the bonus of reduced development cost.

13.2.1 Rules Engine
A rule engine is a mechanism for executing 'business rules'. Business rules are simple business-oriented
statements that encode business decisions of some kind, often phrased very simply in an if/then conditional
form.

For instance, a business rule for a Banking system might be: Given a Customer and his location, if all of the
following conditions are met:- The Customer is High Net worth Individual (HNI) - The Location is Metro - The
Location is not Delhi{_}. The consequence is a 20% Discount in Application fee for Home loan. These
business rules are not new: they are the business logic that is the core of many business software
applications. These rules are expressed as a subset of requirements. They are statements like "give a
twenty-percent discount to non-Delhi Metro HNI Customers"

The primary difference with a rule engine is the way these rules are expressed; instead of embedding them
within the program, these are encoded in business rule form.

Rule engines are not limited to execution; they often come with other tools to manage rules. Enterprise Rule
Engine has all the options such as creation, deployment, storage, versioning and other such administration of
rules either individually, or in groups.

13.2.2 Rules Creation by Guided Rule Editor
Any kind of rule can be created using this tool. User can freely enter business rules in text area, throughout
the rule creation tool.

Standard Rule created in GRE comprises of following elements:

[mandatory]
If
[condition] {AND/OR [condition]}*
Then
[Action]+
[optional]*
Else If
[condition] {AND/OR [condition]}*
Then
[Action]+
[optional]?
Else
[Action]+
where
* = 0 or more Occurrence
?= 0 or 1 Occurrence
+= 1 or more Occurrence

232 | Oracle Banking Enterprise Originations Host Extensibility Guide

13.2 Business Rules

Features of Guided Rule Editor (GRE)

The features of GRE are:

n The 'if' block is mandatory block at the beginning of the structure.

n If (true) kind of condition is not supported. The condition should be comprised of 'LHS operator RKH'.
There is parenthesis support in the UI. But you have to add it manually. Validation of parenthesis is
supported.

n Nested 'if' is not supported from UI as of now.

n Conditions and actions are added by clicking the '+' button.

n After adding Condition user can add 'AND/OR Condition' by clicking '+' button at the End of Condition

n Different types of Actions can be added under 'Then'.

n Any number of 'Else if' can be added after 'If'.

n The condition for 'Else if' should differ from its previous 'if' or 'Else if' condition. Warning should be
shown to user in this case.

n At most one 'Else' condition can be added to this 'if-else if-else' structure.

n No 'Else if' can be added after 'Else'.

n Real time rule structure preview in the bottom panel.

n Rule template / fragment for re usability.

n Facts will be used to create the rules

13.2.3 Rules Creation By Decision Table
Decision tables are a precise yet compact way to model complicated logic. Decision tables, like if-than-else,
associate conditions with actions to perform. But, unlike the control structures found in traditional
programming languages, decision tables can associate many independent conditions with several actions in
an elegant way.

Example:

Conditions & its alternatives Actions

Customer
Type

Location
Type Location Discount

HNI Metro Mumbai 20% of App. fee

HNI Metro Delhi No discount

HNI Jaipur No discount

Table 13–1 Example of a Decision Table

The features of Decision Table are:

n The decision table contains rows and columns. Each row is considered to be a rule. In normal
circumstances, the decision table is evaluated from top to bottom sequentially evaluating the various
rules. It does not stop even if a rule fires. However, there is an option to stop processing of the decision

13 Facts and Rules Configuration | 233

13.2 Business Rules

table in case a rule is satisfied. There should be a special fixed column in the decision table (towards
the right) which allows the decision table author to stop further evaluation of rules in case the current
rule fires.

n Decision table should be expandable, that is, Rows and columns can be added dynamically.

Various functions for column and row manipulation should be available:

n Add Column After

n Add Column Before

n Add Row Above

n Add Row Below

n Delete Column

n Delete Row

n Move Column

n Move Row

n Sort Column Data Ascending

n Sort Column Data Descending

n Column Headers indicate condition / action

n Decision table should be editable to input data/conditions/actions

If a condition or action has range the column should be split in to two columns to accept the minimum and
maximum values. Option to automatically fill series of values. When clicked on row, a brief description about
the condition should appear. Decision table will have brief description for the conditions and actions setup.
Import and export data between Decision Table and Excel Spread Sheet.

13.2.4 Rules Storage
Rules created are stored in database tables as conditions and actions first, then these database tables are
used to create executable rule in java programming language and compiled.

ActionID Outvariable Expression Datatype

ACTION1 Discount Fee 0.2*App Fee Double

ACTION2 Discount Fee 0 Double

ACTION3 Discount Fee 0 Double

Table 13–2 Actions

Condit
ionID

LeftExpr
ession

Relational
Operator

RightExpr
ession

LinkedCon
ditionID

LinkedCondition
alOperator

Actio
nId

Rul
eID

Ver
sion

CON1 Custome
rType == HNI CON2 && ACTI

ON1
RU
LE1 1

Table 13–3 Conditions

234 | Oracle Banking Enterprise Originations Host Extensibility Guide

13.3 Rules Configuration in Modules

Condit
ionID

LeftExpr
ession

Relational
Operator

RightExpr
ession

LinkedCon
ditionID

LinkedCondition
alOperator

Actio
nId

Rul
eID

Ver
sion

CON2 Location
Type == METRO CON3 && RU

LE1 1

CON3 Location == MUMBAI RU
LE1 1

CON4 Custome
rType == HNI CON5 && ACTI

ON2
RU
LE1 1

CON5 Location
Type == METRO CON6 && RU

LE1 1

CON6 Location == DELHI RU
LE1 1

CON7 Custome
rType == HNI CON8 && ACTI

ON3
RU
LE1 1

CON8 Location == JAIPUR RU
LE1 1

13.2.5 Rules Deployment
Rules are put together in compiled java class which are stored in jar file and deployed on the server at runtime.
This deployed jar is available for applications which are going to execute the rules.

13.2.6 Rules Versioning
Each time rule is modified new version is created for the rule and stored.

RuleID Version Name Effective Date

RULE1 1 DiscountRule 01/01/2009

RULE1 2 DiscountRule 31/03/2009

Table 13–4 Rules Versioning

13.3 Rules Configuration in Modules
Rules can be configured for multiple modules and multiple screens. The list of screens where the rule
definition taskflows are used is mentioned below:

n Facts are used by configuring the fact context. Fact Context contains information about interacting
Module. This need to be set to interact with Fact layer. Fact Context has been categorized at Domain
Level.

For example, BankingFactContext will be used in Banking domain. This context has setters method
for Facts which are generic in that domain. For example, BankingFactContext has setAcountId
method. Interacting module need to fill maximum information available. These methods are setters for
Facts which will always has input likeAccountId, PartyId, TransactionAmount and so on.

n It is possible that at the time of interaction, Module already has some derivable Facts which are not
going to change in the interaction. For example, LnAccountProduct at the time of Interest calculation.

13 Facts and Rules Configuration | 235

13.3 Rules Configuration in Modules

n Module will send such Facts using addFact method, using _retrievalKey of the Fact referring Fact
vocabulary. The benefit of sending such facts is these Facts won't get derived again. At the time of
Fact Derivation, if RetrievalKey is present in the input FactMap, same value will be returned as a Fact
value. If RetrievalValue is not present the Fact will be derived.

n Module will send maximum Fact information available at the time of interaction for better performance.

For example, at the time of Loan Account Opening, Pseudo code will look like:

// create fact context.
BankingFactContext lnFactContext = new BankingFactContext
("LN");
lnFactContext.setPartyId(001);
// Set max available information
lnFactContext.addFact("LnAppliedAmount",2000);
lnFactContext.addFact("LnProductType","Home");
lnFactContext.addFact("LnRiskCategory",1);
lnFactContext.addFact("CustType","VIP");

At the time of CashTransaction Event, code will look like:

// create fact context.
BankingFactContext casaFactContext = new BankingFactContext
("CASA");
casaFactContext.setPartyId(003);
casaFactContext.setAcountId("111111111111");
casaFactContext.setTransctionAmount(new BigDecimal(122));
casaFactContext.setTransactionCurrency(104);
casaFactContext.setTransactionAmountInAcy(new BigDecimal
(122));
// Set max available information
casaFactContext.addFact("CustType", "VIP");
casaFactContext.addFact("CASAAccountType", "Saving");

13.3.1 Generic Rules Configuration
Generic Rules can be configured through the screen RL001 where the new rule can be defined or the existing
rule can be updated for multiple domains and domain category. The authoring mode of rule creation can be
chosen as GRE or Decision Table.

236 | Oracle Banking Enterprise Originations Host Extensibility Guide

13.3 Rules Configuration in Modules

Figure 13–25 Generic Rule Configuration

13 Facts and Rules Configuration | 237

13.3 Rules Configuration in Modules

Figure 13–26 Rule Author - Decision Table

Different expressions can be defined in the expression builder screen. The expression once defined can also
be used as one of the expressions in GRE.

238 | Oracle Banking Enterprise Originations Host Extensibility Guide

13.4 Rules Migration

Figure 13–27 Rule Author - Expression Builder

13.4 Rules Migration
This section describes the rules migration.

13.4.1 Rules Configured for Modules
Rule taskflows can be added to different modules. User can set up different rules based on the

screen requirements.

Module Screen Rule Type Rule Description

Alerts AL04 - Alert
Maintenance GRE

User can create the new message template rule or use
the existing rule. In this rule, the message template of
the alert is selected based on the selected rule criteria.
For example, if there is a particular party id, then the
specific alert needs to be sent.

Content
CNM03 -
Document
Policy
Definition

Decision
Table

There are two types of rules (Inbound Rule and
Outbound Rule) defined for each event in the document
policies. These rules primarily define the checklist of
documents based on different input values. The
inbound rule are defined for the scenario of the

Table 13–5 Details of Configured Rules in Modules

13 Facts and Rules Configuration | 239

13.4 Rules Migration

Module Screen Rule Type Rule Description

documents being inputted to the system and the
outbound rule are defined for the scenario of the
documents being retrieved from the system and
displayed to the end user.
For example, In document policy of new applications,
there is a event for identity verification. The inbound
rule can be defined for the category of the documents
which are required to be uploaded for the verification
purpose on the basis of the Party Agency Type and the
Party Type.

Pricing PR006 - Price
Definition

Generic Rule
Author

Price can be rule based that is, amount of fee to be
charged or price code to be charged comes from rule

Pricing
PR005 -
Interest/Margin
Index Code
Definition

Generic Rule
Author

Interest Index can be Rule Based i.e. Interest rate to be
applied comes as outcome of rule.

Pricing
PR004 - Rate
Chart
Maintenance

Generic Rule
Author

Rate Chart can be Rule Based i.e. Interest index to be
used comes as outcome of rule.

Pricing
PR007 - Price
Policy Chart
Maintenance

Decision
Table

Price policy chart internally gets stored as Rule. It
basically defines Prices/RateCharts applicable when
criteria is satisfied which is mentioned in rule.

Pricing
PR040 - Fee
Computation
Analysis

Generic Rule
Author

This screen provides analysis as how the fee for
particular transaction (happened in past) was
computed.
In case of Rule Based Fees charged in transaction,
this screen displays details of that rule along with input
fact values used during rule evaluation.

Pricing
PR017 -
Interest Rate
Derivation
Analysis

Generic Rule
Author

This screen provides analysis as how the interest rate
for particular account was computed.
In case of Rule Based Rate Chart and Rule Based
Index, this screen displays details of that rule along
with input fact values used during rule evaluation.

Tax
TDS01 - Tax
Parameter
Maintenance

Decision
Table

This rule is used to maintain the exemption limit and
that exemption limit will be used at the time of tax
computation.

Product
Manufacturing

PM011 -
Define Interest
Rule

GRE/
Decision
Table

In the Rule and Expression task flow is consumed to
create Rule or Expression, which is used to derive the
BaseForInterest for Calculation of Interest.
During EOD, module send facts which is used derive
the BaseForInterest by executing the Rule or
Expression whichever is attached to the IRD.

Asset
Classification

RL001 - Rule
Author GRE

This rule is used to derive the Asset Classification
code of an account during the Account level
classification batch shell. The facts will be the days
past due date of various outstanding arrears. The rules
will be created under 'LN' and 'CS' and linked to a plan
in Asset Classification Plans (NP002).

240 | Oracle Banking Enterprise Originations Host Extensibility Guide

13.4 Rules Migration

Module Screen Rule Type Rule Description

Rule for Facility-level classification: This rule is
maintained only if the 'Applicability level' in NP001 is
'Facility'. This rule is used to derive the Classification
code for a Facility during the Facility-level batch
classification. The rule will be created under the
Domain Category 'AC' and is linked via Asset
Classification Preference (NP001).

Collections RULE01 -
RuleSet

GRE/Decision
Table

Collection module's rules are defined as RuleSet. The
RuleSet can be incorporated for the batch processing
to filter accounts coming to collection.
In RuleSet screen, multiple rules can be combined
together as a single object called ruleset. The RuleSet
functionality in rule engine provides the user with the
facility to design the sequence of execution of rules
where multiple rules need to be asserted for the same
set of inputs. User would be able to select and wire the
already existing rules and their sequence as per his/her
requirement.
There can be output dependent rules defined. For
example,
Rule 1 is: If(FACILITY_ID equal to TEST_FACILITY_
ID)
Then Account Type equal to FIXED
Else If (FACILITY_ID equal to AAA)
Then Account Type equal to 0
Rule 2 is: If (ACCOUNT_TYPE equal to FIXED)
Then ARS_ASSESSED_AMOUNT equal to 70000
In the above case, rule 2 will be executed only if rule 1
satisfies the condition.

13 Facts and Rules Configuration | 241

242 | Oracle Banking Enterprise Originations Host Extensibility Guide

14 Composite Application Service

OBP Application provides with the functionality of adding composite application services which call multiple
application services in one request. The transactions in these composite application services are called
composite transactions and are made by composing the single transaction out of the multiple APIs
transaction that gives the effect of single transaction.

Using APIs, single transaction can be composed of multiple transactions using very little effort. However, this
cannot be done at run time. Following points have to be taken in to account while making a new composite
transaction out of existing API transactions:

n Both the transactions should be passed in the same session context except overridden warnings.
Overridden warnings from one transaction are passed as an input to next transaction.

n Decision of whether to commit the transaction or rollback the same must be explicitly handled by the
composite transaction. The beginning and closing of interaction should be handled by the composite
transactions.

For the transaction control of the transaction manager, there are two defined patterns:

n With Interaction.begin

l The interaction begins to ensure that the transaction reference number is maintained same
across all participating APIs

l Required for supporting reversal of composite financial APIs

l Context information for entire call is maintained and used.

l Similar to any other API

n With TransactionManager

l Scope restricted to database transaction

l All APIs in the composite have the same commit scope

l Unique transaction reference generated for each API

l Can be thought of as a workflow with APIs participating in the same DB commit scope

l The composite transactions can be handled in two scenarios:
o Calling multiple APIs in the same module
o Calling multiple APIs in different modules by making the adapter call

14.1 Composite Application Service Architecture
The following depicts the sequence diagram for the composite transactions where two of the domain service
calls are shown which can be extended to multiple domain service (1..N) calls. After every domain service
call, 'isTransactionFailure()' call needs to be made to check the transaction status before proceeding for the
next domain service call.

14 Composite Application Service | 243

14.2 Multiple APIs in Single Module

Figure 14–1 Composite Application Service Architecture

14.2 Multiple APIs in Single Module
For writing the composite service API which calls multiple services API, the following Java classes are
needed with respect to new services as mentioned in the below table:

Class Name Description

Composite Service
Interface This provides the method definitions for the composite services.

Composite Service
Class

This provides the implementation class for the composite services. In this
class, we write methods which make the calls to different service APIs. The
response of one service API can be used for making calls in another service
APIs. The final response of the composite service is then created with the
response objects of other service APIs and then transferred back to the adapter
calls.

Executor Interface This provides the extension pre-hook and post-hook method definitions for the
service calls.

Executor Classes This provides the implementation class for the executor interface.

Composite API
Response Object This provides the final response object which is passed to the adapter calls.

Table 14–1 Java Classes

244 | Oracle Banking Enterprise Originations Host Extensibility Guide

14.2 Multiple APIs in Single Module

One of the sample composite service method 'TDAccountPayinApplicationService. openAccountWithPayin'
is shown below. In this service method, there are two methods of two different services:

n tdAccountApplicationService.openAccount

n tdDepositApplicationService.openDeposit

These service methods are called where the new account is created and then the returned account id from
first service is used to do the payin by creating a new deposit for that account.

package com.ofss.fc.app.extensibility.td.service.composite;
import java.util.logging.Level;
import java.util.logging.Logger;
import com.ofss.fc.app.AbstractApplication;
import com.ofss.fc.app.Interaction;
import com.ofss.fc.app.agent.dto.agent.AgentArrangementLinkageDTO;
import com.ofss.fc.app.context.SessionContext;
import
com.ofss.fc.app.extensibility.td.dto.composite.TDAccountPayinRespo
nse;
import
com.ofss.fc.app.extensibility.td.service.composite.ext.IExtendedTe
rmDepositApplicationServiceExtExecutor;
import com.ofss.fc.app.td.dto.account.TermDepositAccountOpenDTO;
import com.ofss.fc.app.td.dto.account.TermDepositAccountResponse;
import com.ofss.fc.app.td.dto.deposit.PayinResponse;
import
com.ofss.fc.app.td.dto.transaction.payin.PayinTransactionDTO;

import
com.ofss.fc.app.td.service.account.ITermDepositAccountApplicationS
ervice;
import
com.ofss.fc.app.td.service.account.TermDepositAccountApplicationSe
rvice;
import
com.ofss.fc.app.td.service.deposit.DepositApplicationService;
import
com.ofss.fc.app.td.service.deposit.IDepositApplicationService;
import com.ofss.fc.common.td.TermDepositTaskConstants;
import com.ofss.fc.enumeration.MaintenanceType;
import com.ofss.fc.infra.exception.FatalException;
import com.ofss.fc.infra.exception.RunTimeException;
import com.ofss.fc.infra.log.impl.MultiEntityLogger;
import com.ofss.fc.service.response.TransactionStatus;
/**
* The TDAccountPayinApplicationService class exposes
functions/services to perform the sample of composite operations.
This extensibility sample services includes: opening account and
deposit
* @author Ofss

14 Composite Application Service | 245

14.2 Multiple APIs in Single Module

*/
public class ExtendedTermDepositApplicationService extends
AbstractApplication implements
IExtendedTermDepositApplicationService {
/**
* Extension point for the class. This is the factory implementation
for the extension of this class.
* Any extension-method call on this factory instance, internally
triggers a call to corresponding
* extension methods of all the extension classes returned by the
ServiceExtensionFactory
*/
private transient IExtendedTermDepositApplicationServiceExtExecutor
extension;
// This attribute holds the component name
private final String THIS_COMPONENT_NAME =
ExtendedTermDepositApplicationService.class.getName();
/**
* This is an instance variable and not a class variable (static or
static final). This is required to
* support multi-entity wide logging.
*/
private transient Logger logger =
MultiEntityLogger.getUniqueInstance().getLogger(THIS_COMPONENT_
NAME);
/ Create instance of multi entity logger
private transient MultiEntityLogger formatter =
MultiEntityLogger.getUniqueInstance();
/**
* @param sessionContext
* @param termDepositAccountOpenDTO
* @return TermDepositAccountResponse
* @throws FatalException
*/
public TDAccountPayinResponse openAccountWithPayin(SessionContext
sessionContext,
TermDepositAccountOpenDTO termDepositAccountOpenDTO,
PayinTransactionDTO payinTransactionDTO,
AgentArrangementLinkageDTO agentArrangementLinkageDTO
) throws FatalException {
super.checkAccess
("com.ofss.fc.app.td.service.composite.TDAccountPayinApplicationSe
rvice.openAccountWithPayin", sessionContext,
termDepositAccountOpenDTO, payinTransactionDTO,
agentArrangementLinkageDTO);
if (logger.isLoggable(Level.FINE)) {

246 | Oracle Banking Enterprise Originations Host Extensibility Guide

14.2 Multiple APIs in Single Module

logger.log(Level.FINE, formatter.formatMessage("Entered into
openAccountWithPayin(). Input : termDepositAccountOpenDTO %s
",THIS_COMPONENT_NAME, termDepositAccountOpenDTO.toString()));
}
Interaction.begin(sessionContext);
TransactionStatus transactionStatus = fetchTransactionStatus();
TermDepositAccountResponse tdAccountResponse = null;
String newAccountId = null;
PayinResponse payinResponse = null;
TDAccountPayinResponse tdAccountPayinResponse = new
TDAccountPayinResponse();
ITermDepositAccountApplicationService tdAccountApplicationService
= new TermDepositAccountApplicationService();
IDepositApplicationService tdDepositApplicationService= new
DepositApplicationService();
try {
Interaction.markCurrentTask(TermDepositTaskConstants.TD_ACCOUNT_
ATTRIBUTE);
createTransactionContext(sessionContext, MaintenanceType.ADDITION);
extension.preOpenAccountWithPayin(sessionContext,
termDepositAccountOpenDTO,
payinTransactionDTO, agentArrangementLinkageDTO);
termDepositAccountOpenDTO.setBankCode(sessionContext.getBankCode
());
if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE, formatter.formatMessage("Entered into
tdAccountApplicationService.openAccount().
Input : termDepositAccountOpenDTO %s ",THIS_COMPONENT_NAME,
termDepositAccountOpenDTO.toString()));
}
tdAccountResponse = tdAccountApplicationService.openAccount
(sessionContext, termDepositAccountOpenDTO);
if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE, formatter.formatMessage("Exiting from
tdAccountApplicationService.openAccount().
Input : termDepositAccountOpenDTO %s ", THIS_COMPONENT_NAME,
termDepositAccountOpenDTO.toString()));
}
if(tdAccountResponse!=null && tdAccountResponse.getAccountId
()!=null &&
!Interaction.isTransactionFailure(transactionStatus)) {
newAccountId = tdAccountResponse.getAccountId();
payinTransactionDTO.getAccountTransactionDTO().setAccountId
(newAccountId);
if (logger.isLoggable(Level.FINE)) {
Logger.log(Level.FINE, formatter.formatMessage("Entered into
tdDepositApplicationService.openDeposit().

14 Composite Application Service | 247

14.2 Multiple APIs in Single Module

Input : payinTransactionDTO %s ", THIS_COMPONENT_NAME,
termDepositAccountOpenDTO.toString()));
}
payinResponse = tdDepositApplicationService.openDeposit
(sessionContext, payinTransactionDTO, agentArrangementLinkageDTO);
if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE,formatter.formatMessage("Exiting from
tdDepositApplicationService.openDeposit().
Input : payinTransactionDTO %s ",THIS_COMPONENT_NAME,
termDepositAccountOpenDTO.toString()));
}
if (payinResponse != null) {
tdAccountPayinResponse.setAccountId(payinResponse.getAccountId());
tdAccountPayinResponse.setDepositId(payinResponse.getDepositId());
tdAccountPayinResponse.setDepositStatus
(payinResponse.getDepositStatus());
tdAccountPayinResponse.setNetInterestRate
(payinResponse.getNetInterestRate());
tdAccountPayinResponse.setAccountingEventItem
(payinResponse.getAccountingEventItem());
tdAccountPayinResponse.setMaintenanceType
(payinResponse.getMaintenanceType());
tdAccountPayinResponse.setMaturityAmount
(payinResponse.getMaturityAmount());
tdAccountPayinResponse.setProductCode(payinResponse.getProductCode
());
tdAccountPayinResponse.setInterestStartDate
(payinResponse.getInterestStartDate());
tdAccountPayinResponse.setValueDate(payinResponse.getValueDate());
tdAccountPayinResponse.setStatus(payinResponse.getStatus());
}
}
extension.postOpenAccountWithPayin(sessionContext,
termDepositAccountOpenDTO, payinTransactionDTO,
agentArrangementLinkageDTO);
fillTransactionStatus(transactionStatus);
tdAccountPayinResponse.setStatus(transactionStatus);
} catch (FatalException fatalException) {
logger.log(Level.SEVERE, formatter.formatMessage("FatalException
from openAccountWithPayin()"), fatalException);
fillTransactionStatus(transactionStatus, fatalException);
} catch (RunTimeException fcrException) {
logger.log(Level.SEVERE, "RunTimeException from
openAccountWithPayin()", fcrException);
fillTransactionStatus(transactionStatus, fcrException);
} catch (Throwable throwable) {
logger.log(Level.SEVERE, "Throwable from openAccountWithPayin()",
throwable);
fillTransactionStatus(transactionStatus, throwable);

248 | Oracle Banking Enterprise Originations Host Extensibility Guide

14.2 Multiple APIs in Single Module

} finally {
Interaction.close();
}
super.checkResponse(sessionContext, payinResponse);
if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE, formatter.formatMessage("Exiting from
openAccountWithPayin()."));
}
return tdAccountPayinResponse;
}
}

14 Composite Application Service | 249

250 | Oracle Banking Enterprise Originations Host Extensibility Guide

15 ID Generation

OBP is shipped with the functionality of generation of the IDs in three ways that is, Automatic, Manual and
Custom. These three configurations can be defined by the user as per their requirements:

If the configuration type for the ID generation is set to automatic, the ID is generated as per the defined
generation logic for the automated ID generation. You can set the pattern, sequence, weights and check digit
modulo and modify the automatic generation logic.

If the configuration type is set to manual then the ID will be input and it will be checked in the database if it is
unique. For the ID, a certain range of serial numbers can be reserved in the range table by the custom
developer and the teller can select it from amongst the ranges while doing the manual entry.

In case the bank's requirement is to have the different ID generation process which can be written or modified,
then the extensibility feature is provided in OBP. In this feature, customized ID generation logic can be written
and can be plugged in the OBP application by creating the custom ID generation class and doing the required
configurations in the database.

The configuration of the ID generation process is shown in the sequence diagram below where the generator
is selected based on the set configuration type.

Figure 15–1 Configuration of ID Generation Process

From the implementation perspective, the following sections describe the change in configurations required
for customizing the ID generation.

15 ID Generation | 251

15.1 Database Setup

15.1 Database Setup
The configuration part of the ID generation requires the following components which need to be defined in the
OBP application. The following tables are involved to store the generation logic details for ID generation:

n FLX_CS_ID_CONFIG_B: This is the main config table where the identifier is defined with the
combination of the category and sub category columns. The type of generation logic is determined
based on the configuration set in the CONFIG_TYPE column of this table.

Column Name Description

CATEGORY_ID Represents the Category Example: Party,Origination, DDA and so on

SUB_CATEGORY_ID Represents the Sub Category Example: PartyId, AccountNo and so on

PATTERN_TXT Represents the pattern in which the ID is generated Example:
SSSSSSSSC, NNNBBBBYYYYSSSSSSS

CONFIG_TYP Represents Generation type values are AUT for Automatic, MAN for
Manual, CUS for Custom

GENERATOR_CLASS_NAME Fully Qualified classname of ID generator for config type Custom

SEQ_VALUE Running Serial Number

WEIGHT Comma separated Weight for each character defined in the pattern text
Example: '0,0,7,6,5,4,3,2', '3,8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1'

CHK_DIGIT_MODULO Check digit modulo

CREATED_BY Indicates the User who created the row

CREATION_DATE Indicates the date and time of the creation of the row

LAST_UPDATED_BY Indicates the User who last updated the row

LAST_UPDATE_DATE Indicates the date and time of the last update of the row

OBJECT_VERSION_NUMBER Indicates the version number, Used to implement optimistic locking

OBJECT_STATUS_FLAG Status Flag Example: A

Table 15–1 FLX_CS_ID_CONFIG_B

n FLX_CS_ID_RANGE: This table is used to determine the range of the values which the ID can take.

Column Name Description

RANGE_ID Represents the identifier for the range definition

RANGE_NAME Represents the name defined for the range Example: Party, DDA

RANGE_START Defines the beginning value for the range

RANGE_CURRENT Defines the current value for the range

RANGE_END Defines the ending value for the range

CATEGORY_ID Represents the Category defined in FLX_CS_ID_CONFIG_B

SUB_CATEGORY_ID Represents the Sub Category defined in FLX_CS_ID_CONFIG

Table 15–2 FLX_CS_ID_RANGE

252 | Oracle Banking Enterprise Originations Host Extensibility Guide

15.2 Automated ID Generation

n FLX_CS_ID_USF: This table is used to determine the user selected fields for the ID generation logic.

Column Name Description

USF_ID Represents the identifier for the user selected fields

USF_NAME Represents the name for the user selected fields

IS_FIXED_FLAG Defines if the user selected fields are fixed

CATEGORY_ID Represents the Category defined in FLX_CS_ID_CONFIG_B

SUB_CATEGORY_ID Represents the Sub Category defined in FLX_CS_ID_CONFIG_B

Table 15–3 FLX_CS_ID_USF

15.1.1 Database Configuration
In case of existing ID generation logic in the database, end user can update the seed data scripts by
modifying configuration type and other parameters (pattern, sequence, weight and check digit modulo). While
in case of new type of ID generation logic, an insert sql can be added in the scripts of tables.

15.2 Automated ID Generation
For the configuration type as automatic, user needs to set the CONFIG_TYPE as "AUT" in the FLX_CS_ID_
CONFIG_B table. The ID generation logic is determined based on the set values in the config table for the
pattern, sequence, weight and check digit modulo. The three attributes 'sequence', 'weights' and 'check digit
modulo' are primarily used for calculation of the check digit.

ID Generation with Sequence and Range

ID is picked using the database sequence. This is needed in the case where serial number is used as part of
an ID. Database sequence is used to avoid deadlock while trying to update, a sequential value stored and
retrieved as part of the configuration in-case where the application is multiple threaded. This might lead to
’gaps’ in the sequence of ids generated, if an exception occurs in the Transaction. However, this suffices as
the errors related to deadlocks are mitigated.

For the first call to derive the value, the sequence for the specific configuration pattern is created, with names
as CATEGORYTYPE_SUBCATEGORYTYPE_SEQ. The creation of this sequence happens only once in
the lifecycle of application deployment. For example, TD (category) and AccountId (sub-category), the
sequence generated is TD_ACCOUNTID_SEQ. And, for the successive requests, the already created
sequence is used for sequence generation.

ID Generation with Pattern Text

The pattern text is split and an array is created of the characters. In case of mask ID configuration's pattern,
ID configuration's text patterns are split. If the value is found to contain the special character (out of range [65-
90]), it will be appended as it is to generated ID. Following are the conditions of ID generation with pattern
text:

n If the pattern value is not the special character and the ID value is 'S' that is, SerialNumber, then range
is looked upon:

l If the range is defined, the current position of the range is determined based on category and
sub-category. If the current position value's length is greater than pattern length, then
characters between [0-length of pattern] will be generated ID, else zeros are prefixed before

15 ID Generation | 253

15.2 Automated ID Generation

current position value of range until it's size becomes pattern's length. For example, the pattern
is 'SSSSSS' and the generated range gives the value as '2345' then the actual value will
become '002345'.

l If range is not defined, then next value from sequence category_subCategory_SEQ is picked,
it'll also be corrected to the size of pattern's length as mentioned in case of above example.

n If the pattern value contains 'C', that is, check digit. Check digit computation is done and then
appended the computed value to the pre computed ID value. The input value, weight and check digit
modulo are used for calculation of check-digit. The input value can be sequence ID or can be the ASCII
value in case the inputs are characters. The weights will be comma separated string of the digits to be
used for the calculation.

n If the pattern value contains 'R', related party identifier is used for that value.

n If the pattern value doesn't match any of the above character, the value is fetched from the pattern map
for the pattern's ID and the length is adjusted to the pattern's attribute length. These pattern map
characters need to be passed by the caller service for calculation.

For example, let us take the submissionId with the pattern as NNNYYYYBBBSSSSS in the database.

Figure 15–2 Automated ID Generation - Single Record View

The pattern hashmap 'value' will be populated and passed by the caller with the key value pair as pattern
character as key and its corresponding value. As shown below, 'N' will contain name value, 'Y' will contain
year value and 'B' will contain branch code.

254 | Oracle Banking Enterprise Originations Host Extensibility Guide

15.2 Automated ID Generation

Figure 15–3 Automated ID Generation - Generate Submission ID

Figure 15–4 Automated ID Generation - Submission ID Generation Service

15 ID Generation | 255

15.3 Custom ID Generation

The ID will be generated by the automatic generator with first three characters as name, next four digits as
year, next three characters of branch and rest with generated sequence as per the mask pattern.

In case of without mask configuration's pattern. If range ID is -1, it means that there is no range defined for the
mask configuration, it then picks up the range details with range ID based on the category and sub-category.
The generated ID will become the current position of range. If range is not defined in the table, then the
sequence needs to be defined and the value is picked based on that. The next value of the sequence will
become the generated ID value.

15.3 Custom ID Generation
In case of configuration type as custom, user needs to set the CONFIG_TYPE as ’CUS’ in the CONFIG_
TYP column in the FLX_CS_ID_CONFIG_B table.

User can customize the ID generator by writing a new custom ID generator class which will need to extend
the IdGenerator and write the abstract methods for the ID generation. This class needs to be mentioned in the
GENERATOR_CLASS_NAME column of FLX_CS_ID_CONFIG_B table.

Figure 15–5 Custom ID Generation - Custom ID Generator

256 | Oracle Banking Enterprise Originations Host Extensibility Guide

15.3 Custom ID Generation

In case the user want to write the custom generation logic in a specific customized pattern definition, then
user can do that by writing the custom constant class and the custom pattern class which can pick the
defined pattern from the configuration object set in the PATTERN_TXT column of the FLX_CS_ID_CONFIG_
B table of the database. The user will pass the values in the pattern hashmap which will then populate the
pattern and generate the ID.

Figure 15–6 Custom ID Generation - Custom ID Generation Constants

15 ID Generation | 257

15.3 Custom ID Generation

Figure 15–7 Custom ID Generation - Custom Pattern Based Generator

258 | Oracle Banking Enterprise Originations Host Extensibility Guide

16 Extensibility of Domain Objects using Flex
Fields

This chapter describes about the Flex Field provisioning by the product at the Service Layer. Flex Fields are
additional attributes provisioned upfront via configuration and with basic validations. By using e Flex Field,
banks IT, consultants or partners can configure additional data elements to be part of the domain entities,
without the need to add custom code. It provides ability to use these additional data elements in the business
logic of the application. These additional elements are available in the service interface in the form of key-
value pairs in Dictionary Object. Some important features of Flex Fields are:

n A Flex Field is a flexible data field that can be customized as per business needs without programming.

n Only Seed Metadata Configuration is required to enable Flex Fields.

n Flex field attributes can be provisioned at each entity level [Max 30 attributes per entity].

n Flex Field Attribute are strongly typed at an definition & busiless logic validation level. However, the
Data Type is maintained as String in the entity and VARCHAR (250) in database.

n Service input or data transfer is supported via Dictionary Object (Separate indicator is provided in
Dictionary Object to distinguish flex field dictionary object)

Utilizing Flex Fields in OBP requires following the two steps mentioned below:

n Flex Field Provisioning: This step denotes ensuring that Table of Entity which is candidate for
extension has required number of columns in database. Product out of the box ships sufficient number
of Flex Field columns for all Entities eligible for extension. Still if Consultant wants more Flex Field
columns to utilize, then this is Optional step is needed.

n Flex Field Utilization: This step denotes utilizing required number of Flex Fields by providing its
Metadata. Utilized Flex Fields should be always less or equal to Provisioned flex Fields.

16.1 Flex Field - Provisioning
Maximum 30 attributes per entity can be provisioned at each entity level. Each Attribute data type is declared
as String in Java Entity (inside superclass AbstractDomainObject) and VARCHAR (255) in table for
flexibility.

16.1.1 How to know Maximum Flex Fields Provisioned for Entity?
n FLX_FW_FLX_FLD_ENTITIES_ALL_B seed table contains list of all Product Entity tables for which

Flex Fields are provisioned.

n MAX_FLX_FLD_COLUMN_COUNT column in this table denotes Maximum number of Flex Fields
currently provisioned for that Entity. This value cannot exceed 30.

n Consultant can utilize only those number of Flex Fields which are provisioned as per MAX_FLX_FLD_
COLUMN_COUNT column value.

n If Consultant wants to utilize more Flex Fields than that are already provisioned as per MAX_FLX_
FLD_COLUMN_COUNT column value, then it can be done using steps mentioned in section below.

16 Extensibility of Domain Objects using Flex Fields | 259

16.2 Flex Field - Utilization

16.1.2 Increase Maximum Flex Fields Provisioned for Entity (Optional
Step)

n In order to increase number of Provisioned Flex Fields for Entity, Consultant needs to update value of
column MAX_FLX_FLD_COLUMN_COUNT in table FLX_FW_FLX_FLD_ENTITIES_ALL_B. This
number should not exceed 30.

n After that Consultant needs to execute stored procedure AP_FW_PROVISION_FLEX_FIELDS.

n This stored procedure will read seed table FLX_FW_FLX_FLD_ENTITIES_ALL_B and alter those
entity tables to add missing Flex Fields columns in the table.

n This procedure assumes that few Flex Field Columns might be already present in table and will not
impact those columns or tables.

16.2 Flex Field - Utilization
Utilization of Flex Field can be done using two steps:

n Maintain Flex Field Metadata by:

l Using Seed Data Configuration (Fast Path: OPA006) page.

l Directly making seed entries in table FLX_FW_FLX_FLD_METADATA_B.

n Restart host Server.

16.2.1 Maintain Flex Field Metadata using Seed Data Configuration (Fast
Path: OPA006) Page

n Metadata gives information about Domain Object Name and following information about each Flex
Field Attribute:

l Name - Mandatory

l Label - Mandatory

l Data Type - Mandatory

l Is Mandatory - Optional

l Min Length - Optional

l Max Length - Optional

l RegEx Pattern - Optional

l Enum Type - Mandatory if Data type is Enum

l Max Date Validator - Optional and Applicable only for Date Data Type

n Go to OPA006 page. Select Entity Name as Flex Field Metadata. Details of existing Flex Field entity
Metadata will be displayed in read mode.

n First two columns (Entity Name, Attribute Name) will be in read only mode for existing values (As
these are Key values). However, when user clicks Add, these two columns will be editable only for
Newly added rows.

260 | Oracle Banking Enterprise Originations Host Extensibility Guide

16.2 Flex Field - Utilization

n If user clicks Add to add new row and if a user clicks final OK without entering Entity Name, Attribute
Name, Attribute Label or Description, and Attribute Data Type, then the following error is displayed.

Figure 16–1 OPA006 - Error

n Duplicate Attribute names cannot be present. If present, then the following error is displayed.

Figure 16–2 OPA006 - Duplicate Attribute

n When Attribute Data type is chosen as Enumerations then Enumeration Type should be present. If not,
then the following error is displayed.

16 Extensibility of Domain Objects using Flex Fields | 261

16.2 Flex Field - Utilization

Figure 16–3 OPA006 - Enumeration Type

n Consecutives attributes names should be present. User cannot skip any attribute name otherwise the
following error is displayed.

Figure 16–4 OPA006 - Consecutive Attributes Names

n Enumeration type is only applicable if Attribute Data Type is Enumerations. If other than Enumerations
is chosen as an Attribute Data Type, then the following error is displayed.

262 | Oracle Banking Enterprise Originations Host Extensibility Guide

16.2 Flex Field - Utilization

Figure 16–5 OPA006- Invalid Input for Attribute Data Type.

n Maximum Date Validator type is only applicable if Attribute Data Type is Date. If other than Date is
chosen as an Attribute Data Type, then the following error is displayed.

Figure 16–6 Attribute Data Type as Date

n If all information is valid Flex Field Metadata is saved in table FLX_FW_FLX_FLD_METADATA_B.

n Alternatively instead of using OPA006 page, Consultant can directly add seed data in FLX_FW_FLX_
FLD_METADATA_B table for required Flex Fields and check-in the same.

n Flex field metadata is mandatory and useful to achieve following:

l Clearly indicates out of Provisioned Flex Fields which are actually utilized and for which
purpose. Flex Field Metadata is mandatory (at least label and data type). This is extremely
important when, as a part of previous customization if few Flex Fields are utilized then
Consulting should clearly know used fields and available fields.

l Attribute Description or Label mapping.

l Attribute Data Type mapping and supporting basic validations.

l Throwing validation message with respective label for better interpretation.

n After populating Flex Field Metadata, Host Server restart is needed.

16 Extensibility of Domain Objects using Flex Fields | 263

16.3 Runtime Storage and Retrieval of Flex Field Attribute values

n On Host Restart, during ORM loading for each Entity in FLX_FW_FLX_FLD_METADATA_B table
Flex Field related ORM mapping is added dynamically as per Metadata using
EclipseLinkSessionCustomizer class.

n Out of Provisioned columns only optimal number of table columns are actually used during this
dynamic ORM mapping based on fields specified in FLX_FW_FLX_FLD_METADATA_B table.

n Supported sizes are: 5/10/15/20/25/30 fields.

n AbstractDomainObject holds following objects to support these flexible sizes. One of these fields is
chosen for ORM mapping per Entity as per Metadata configuration.

l FiveAttributeFlexField

l TenAttributeFlexField which extends FiveAttributeFlexField

l FifteenAttributeFlexField which extends TenAttributeFlexField

l TwentyAttributeFlexField which extends FifteenAttributeFlexField

l TwentyFiveAttributeFlexField which extends TwentyAttributeFlexField

l ThirtyAttributeFlexField which extends TwentyFiveAttributeFlexField

16.3 Runtime Storage and Retrieval of Flex Field Attribute
values

n Service input or data transfer is supported via Dictionary Object. Separate indicator named flexField is
provided to distinguish flex field dictionary object.

n The attributes which are passed as part of the Dictionary object with the Flex Field indicator, will be
persisted as Flex Field in the respective Entity Table. The attribute name follow the name convention
as “Attribute<<attribute number>>” [‘A’ caps, like Attribute1, Attribute2, Attribute3, …. and
Attribute30].

n For example, com.ofss.fc.domain.lcm.entity.collaterals.realestate.Industrialproperty this Entity is
configured to make use of Flex Field attribute by defining metadata.

n Data is saved using Dictionary input as follows, if API is being tested using SOAP UI Toolkit:

Figure 16–7 Runtime Storage Saved Data

n Data is retrieved using Dictionary as follows, if API is being tested using SOAP UI Toolkit:

264 | Oracle Banking Enterprise Originations Host Extensibility Guide

16.4 Flex Field - Fact support

Figure 16–8 Runtime Storage Retrieved Data

16.4 Flex Field - Fact support
Flex Fields provisioned can be consumed as facts as below,

n Derived facts can be created, with following Derivation Type.

l Java Based Derivation

l JPQL Query Based Derivation

l SQL Query Based Derivation

n Following is example of JPQL based Fact which uses Flex Field attribute.

n com.ofss.fc.domain.lcm.entity.collaterals.realestate.IndustrialProperty this Entity is configured to
make use of FiveAttributeFlexField by defining Flex Field attribute metadata.

n Data will be saved using Dictionary input as follows, if API is being tested using SOAP UI Toolkit:

Figure 16–9 Flex Field - Fact support Saved Data

n After this save API call, Data will be stored in table as follows:

16 Extensibility of Domain Objects using Flex Fields | 265

16.4 Flex Field - Fact support

Figure 16–10 Flex Field - Fact support Data in Table

n Fact seed can be added to create fact named Collateral.IndustrialProperty.VacantLand, which will
return value of Flex Field Attribute1, by defining following Fact Seed. Note that in JPQL query
a.fiveAttributeFlexField.attribute1 is used to select value of Flex Field, as for this entity Metadata is
given for less than or equal to 5 Fields, hence AbstractDomainObject.fiveAttributeFlexField is chosen
as field to be mapped for dynamic Flex Field ORM mapping. Depending upon number of Flex Fields
actually utilized, appropriate field out of following AbstractDomainObject class fields can be used in
query: fiveAttributeFlexField, tenAttributeFlexField, fifteenAttributeFlexField,
twentyAttributeFlexField, twentyFiveAttributeFlexField, thirtyAttributeFlexField.

Figure 16–11 Flex Field - Fact support Seed

n After adding this seed, Collateral.IndustrialProperty.VacantLand will be available as Fact while
defining Pricing or Rules in OBP as follows:

Figure 16–12 Flex Field - Fact support After Seed

266 | Oracle Banking Enterprise Originations Host Extensibility Guide

16.5 Flex Field – Validation Support

16.5 Flex Field – Validation Support
Basic validations are supported for Flex Fields using Metadata configuration (Refer Section 16.2.1 Maintain
Flex Field Metadata using Seed Data Configuration (Fast Path: OPA006) Page). Using Flex field Metadata for
each attribute in Entity, supported validation can be configured. Find below the details on the metadata
configuration for supported validations. This needs be seeded or can be maintained using OPA006 page. This
requires host restart to reflect.

Table 16–1 metadata configuration details for validations

Column Descrip-
tion Example

ENTITY_
NAME

Name of
the entity
where flex
field is
applic-
able. Full
qualified
name.

com.ofss.fc.-
domain.lcm.entity.collaterals.realestate.ResidentialProperty

ATTRIBUT-
E_NAME

Name of
the attrib-
ute of the
flex field.
Attribute1,
Attribute
2, or so
on...

Attribute1

LABEL

Label or
descrip-
tion of the
attribute.
When val-
idation
error mes-
sage is
thrown,
this is
used to
throw
exception.

Description of land

16 Extensibility of Domain Objects using Flex Fields | 267

16.5 Flex Field – Validation Support

Column Descrip-
tion Example

If not
main-
tained,
then the
attribute
name will
be used
for the val-
idation
message.

ATTRIBUT-
E_DATA_
TYPE

Attribute
data type.
Sup-
ported
Data
Types
are:
STRING /
BIG_
DECIMA-
L/
INTEGA-
R/
BOOLEA-
N/ DATE/
ENUM.
Used
when
validating
the field
based on
the data-
type.

STRING

IS_
MANDATO-
RY

Validator
field: Indic-
ates

Y

268 | Oracle Banking Enterprise Originations Host Extensibility Guide

16.5 Flex Field – Validation Support

Column Descrip-
tion Example

whether
attribute
value is
man-
datory.
Check for
not null /
empty val-
ues.

MIN_
LENGTH

Validator
field: Indic-
ates the
minimum
length
required
for the
attribute.
Validates,
if main-
tained
some
value.

5

MAX_
LENGTH

Validator
field: Indic-
ates the
maximum
length
required
for the
attribute.
Validates,
if main-
tained
some
value.

250

16 Extensibility of Domain Objects using Flex Fields | 269

16.5 Flex Field – Validation Support

Column Descrip-
tion Example

PATTERN_
REGEX

Validator
field: Indic-
ates the
regular
expres-
sion sup-
ported by
the attrib-
ute. Val-
idates, if
main-
tained
some
value.

^[a-zA-Z0-9]*$

ENUM_
TYPE_
NAME

Validator
field: Indic-
ates the
enu-
meration
type sup-
ported by
the attrib-
ute. Fully
qualified
name.
Checks
with the
enu-
meration
value
sent. Val-
idates, if
main-
tained
some
value and
data type

<<Applicable only for Enum type, e.g., com.ofss.fc.e-
numeration.lcm.collaterals.CollateralType>>

270 | Oracle Banking Enterprise Originations Host Extensibility Guide

16.5 Flex Field – Validation Support

Column Descrip-
tion Example

is Enum.

MAX_
DATE_
VALIDATO-
R_TYPE

Validator
field: Indic-
ates the
maximum
date val-
idator
type.
(Posting
date / Sys-
tem date /
Value
date). Val-
idates
whether
the date is
not more
than the
men-
tioned
date val-
idator
type. Date
validator
type sup-
ported are
Posting
date, Sys-
tem date
and Value
date. Val-
idates, if
main-
tained
some
value and
data type
is date.

<<Applicable only for Date type, e.g., POSTING_DATE>>

16 Extensibility of Domain Objects using Flex Fields | 271

16.5 Flex Field – Validation Support

n For Example, suppose com.ofss.fc.domain.lcm.entity.collaterals.releaserate. IndustrialProperty and
com.ofss.fc.domain.lcm.entity.collaterals.releaserate. Residentialproperty these Entities are
configured to make use of Flex Fields by defining attribute metadata as follows:

Figure 16–13 Flex Field - Validation Support - Metadata

n Following is examples depict output of Flex Field validation framework, at runtime, when tested using
SOAP UI toolkit.

n Mandatory Validation

l Input:

Figure 16–14 Flex Field - Validation Support - Mandatory Validation - Input

272 | Oracle Banking Enterprise Originations Host Extensibility Guide

16.5 Flex Field – Validation Support

l Output:

Figure 16–15 Flex Field - Validation Support - Mandatory Validation -Output

n Min/Max Length Validation

l Input:

Figure 16–16 Flex Field - Validation Support - Min/Max Lenght Validation Input

16 Extensibility of Domain Objects using Flex Fields | 273

16.5 Flex Field – Validation Support

l Output:

Figure 16–17 Flex Field - Validation Support - Min/Max Lenght Validation Output

n Pattern (Regex) Validation

l Input:

Figure 16–18 Flex Field - Validation Support - Pattern (Regex) Validation Input

274 | Oracle Banking Enterprise Originations Host Extensibility Guide

16.5 Flex Field – Validation Support

l Output:

Figure 16–19 Flex Field - Validation Support - Pattern (Regex) Validation Output

n Enum Validation

l Input:

Figure 16–20 Flex Field - Validation Support - Enum Validation Input

l Output

Figure 16–21 Flex Field - Validation Support - Enum Validation Output

16 Extensibility of Domain Objects using Flex Fields | 275

16.6 Flex Field – Usage Instructions

n Date Validation

l Input:

Figure 16–22 Flex Field - Validation Support - Date Validation Input

l Output:

Figure 16–23 Flex Field - Validation Support - Date Validation Output

16.6 Flex Field – Usage Instructions
Perform the following steps for usage:

n Identify the Entity for which Flex Field support is required.

n Refer seed table FLX_FW_FLX_FLD_ENTITIES_ALL_B to ascertain that Flex Field is already
provisioned that Entity Table with sufficient number of MAX_FLX_FLD_COLUMN_COUNT.

n If Flex Field is not provisioned in FLX_FW_FLX_FLD_ENTITIES_ALL_B then, verify with the product
team.

n In case Flex Field is provisioned but MAX_FLX_FLD_COLUMN_COUNT is not sufficient then follow
steps mentioned in section to get extra columns provisioned Section 16.1 Flex Field - Provisioning

n Pass or Retrieve the attributes via Dictionary object, as per Section 16.3 Runtime Storage and
Retrieval of Flex Field Attribute values.

276 | Oracle Banking Enterprise Originations Host Extensibility Guide

16.6 Flex Field – Usage Instructions

n If validation required for any of the attributes in the Flex Field, configure or seed the metadata as per
Section 16.5 Flex Field – Validation Support . By dynamic provisioning & configuration page, this will
be enabled via configuration page: OPA006.

n If fact required, follow Section 16.2 Flex Field - Utilization for details.

16 Extensibility of Domain Objects using Flex Fields | 277

278 | Oracle Banking Enterprise Originations Host Extensibility Guide

17 Extensibility of Domain Objects -
Dictionary Pattern

This chapter describes how consultants or other third parties can extend OBP domain by leveraging the
dictionary design pattern to extend any Abstract Domain Object on which a maintenance screen and
corresponding services are supported by product and are shipped for a release. This pattern provides true
domain model extension capabilities by allowing addition of custom data fields to the underlying domain
objects and the database tables mapped to them. In this approach, the data model for the custom fields is
extended from that of the domain objects itself and hence can be consumed in business policies or even rules
as facts. The dictionary pattern enables using the custom data fields in the extensions, business rules (as
facts) and custom business policies as the domain object load from the database retrieves the extended
domain object and not just the product domain object.

The framework related changes to make such support available are supported from release 2.3 of the Oracle
Banking Platform. These changes have been made across layers including the UI, JSON, Assembler, ORM
and DB layer. The changes required to be made by consulting to support the persistence and usage of the
extra attributes by extending the product domain object have been discussed in detail in the sections by
taking common domain extensibility use cases as examples. The process in which data is transferred from
the UI layer, to the host layer is mentioned briefly as points below:

n The proxy layer provides an extension point wherein the additional data fields on the screen can be
populated as name value pairs and set in the input request.

n The custom attribute data gets passed through the JSON layer onto the middleware host as part of the
application service invocation.

n These name value pairs are translated into the custom domain object which extends the base OBP
domain object.

n The custom fields get persisted into the DB along with the domain object fields as part of ORM
mapping.

n Exact opposite flow follows for inquiry services in which the data flows back via output response.

17 Extensibility of Domain Objects - Dictionary Pattern | 279

17.1 Customized Domain Object Attribute Placeholders

Figure 17–1 Extensibility of Domain Objects - Framework

The dictionary data is passed in the request DTO and is therefore available as part of the pre and post
application service extensions. The above process is described in detail in the sections below.

17.1 Customized Domain Object Attribute Placeholders
Data transfer object (DTO) is a design pattern used to transfer data between an external system and the
application service. All the information may be wrapped in a single DTO containing all the details and passed
as input request as well as returned as an output response. The client can then invoke accessor (or getter)
methods on the DTO to get the individual attribute values from the Transfer Object. All request response
classes in OBP application services are modelled as data transfer objects. These objects extend a base
class DataTransferObject which holds an array of Dictionary object. The Dictionary encapsulates an array of
NameValuePairDTO which is used to pass data of custom data fields or attributes from the UI layer to the
host middleware. The following is mentioned as points below:

n All DTO classes should extend DomainObjectDTO class.

n The DomainObjectDTO class has been made to extend DataTransferObject class.

n This class has a single attribute which is an array of Dictionary class.

n Dictionary class has a single attribute which is an array of NameValuePairDTO

Using an array of name value pairs inside an array of dictionary allows for supporting two dimensional grid
structures in the UI layer.

At present whenever any third party requires support for additional attributes in a Domain Object, the
information regarding the corresponding Customized Domain Object name and attribute name-value pair is
required to be populated as an array of NameValuePairDTO which in turn is set in the Dictionary class as the
first and only element of the ’dictionaryArray’ attribute of the DataTransferObject. This is shown in the
following code extract.

280 | Oracle Banking Enterprise Originations Host Extensibility Guide

17.2 Customized Domain Object DTO Interceptor in UI Layer

Figure 17–2 Code Extract

17.2 Customized Domain Object DTO Interceptor in UI Layer
All DTO classes should extend DomainObjectDTO in case maintenance fields are required.

For example, ’MessageDataAttributeDTO’ Class which extends ’DomainObjectDTO’ is used to transfer data
between an external system and the application service and persist data for Domain Object
’MessageDataAttribute’.

’CustomizedMessageDataAttribute’ is a subclass of this Customizable Maintenance Domain Object called
’MessageDataAttribute’ which is extended by the partners or consulting teams to include and subsequently
persist extra attributes along with those of ’MessageDataAttribute’.

This information can be mapped as input and output to the application services with the help of
dictionaryArray attribute of MessageDataAttributeDTO inherited from DataTransferObject.

17.2.1 Interceptor Hook to Persist Customized Domain Object Attributes
This UI Layer Interceptor Hook is used during Create or Update mode to populate DataTransferObject with
the dictionaryArray attributes from customized Screen Components to be persisted as the Customized
Domain Object.

In the UI Layer, the ApplicationServiceProxyFacade is used to send the DataTransferObject on to the Host to
be persisted. Before it does so, it uses the InterceptorFactory to instantiate the appropriate
IProxyLayerInterceptor defined in the DictionaryInterceptor.properties corresponding to the key for this
application service or task code. Thereafter it invokes the ’populateDictionaryArray’ method of this
IProxyLayerInterceptor to populate DataTransferObject with the dictionaryArray attributes from customized
Screen Components. Thereafter, it sends the entire DataTransferObject on to the Host for persistence as the
Customized Domain Object.

The following figure provides the details of Interceptor Hook to populate and persist Customized Domain
Object.

17 Extensibility of Domain Objects - Dictionary Pattern | 281

17.2 Customized Domain Object DTO Interceptor in UI Layer

Figure 17–3 Interceptor Hook to Persist Customized Domain Object

17.2.2 Interceptor Hook to Fetch Customized Domain Object Attributes
This UI Layer Interceptor Hook is used during read mode to extract the dictionaryArray attributes from the
DataTransferObject and populate the customized Screen Components with the help of the screen view
object.

In the UI Layer, the ApplicationServiceProxyFacade is used to receive the DataTransferObject from the Host.
After it does so, it uses the InterceptorFactory to instantiate the appropriate IProxyLayerInterceptor defined in
the DictionaryInterceptor.properties corresponding to the key for this application service or task code.
Thereafter, it invokes the ’extractDictionaryArray’ method of this IProxyLayerInterceptor to extract the
dictionaryArray attributes from the DataTransferObject and populate the customized Screen Components
with the help of the screen view object. Thereafter, it returns the entire DataTransferObject on to the Screen
Backing Bean or Helper Class from where the proxy fetch call was invoked.

The following figure provides the details of Interceptor Hook to fetch Customized Domain Object and populate
extra Screen Components.

282 | Oracle Banking Enterprise Originations Host Extensibility Guide

17.3 Dictionary Data Transfer from UI to Host

Figure 17–4 Interceptor Hook to Fetch Customized Domain Object

InterceptorFactory instantiates the appropriate IProxyLayerInterceptor defined in the
DictionaryInterceptor.properties corresponding to the key.

Examples of such key value pair is:-

com.ofss.fc.appx.ep.service.dispatch.message.service.client.proxy.MessageTemplateApplicationServiceP
roxyFacade=com.ofss.fc.ui.taskflows.ep.messageTemplateUI.view.interceptor.MessageTemplateUIInterc
eptor

com.ofss.fc.appx.party.service.contact.service.client.proxy.ContactPointApplicationServiceProxyFacade=
com.ofss.fc.ui.view.party.contactPoint.interceptor.ContactPointUIInterceptor

17.3 Dictionary Data Transfer from UI to Host
The section describes the dictionary data transfer from UI to Host.

17.3.1 Customized Domain Object DTO Transfer from UI to Host
In UI server <ApplicationService>JSONClient constructs the JSON Object for <DomainObjectDTO> which
includes the dictionaryArray of the DataTransferObject.

For example, in UI server MessageTemplateApplicationServiceJSONClient constructs the JSON Object for
MessageTemplateDTO which includes MessageTemplateAttributeDTO and the dictionaryArray of
DataTransferObject as shown below.

17 Extensibility of Domain Objects - Dictionary Pattern | 283

17.3 Dictionary Data Transfer from UI to Host

Figure 17–5 JSONClient constructs the JSON Object

<ApplicationService>JSONClient constructs the JSON Object for <DomainObjectDTO> which
includes the dictionaryArray of the DataTransferObject

The above process uses AbstractJSONBindingStub class' serializeDictionaryArray to include ’genericName’
and ’value’ attributes of NameValuePairDTOArray which was inside dictionaryArray attribute of
MessageTemplateAttributeDTO.

284 | Oracle Banking Enterprise Originations Host Extensibility Guide

17.3 Dictionary Data Transfer from UI to Host

Figure 17–6 SerializeDictionaryArray to include GenericName and Value attributes

AbstractJSONBindingStub class's serializeDictionaryArray to include "genericName" and "value"
attributes of NameValuePairDTOArray

In the Host Server <ApplicationService>JSONFacade extracts the ’DictionaryArray’ attribute of JSON
Object and sets it as <DomainObjectDTO>'s dictionaryArray attribute.

For example, in the Host Server, MessageTemplateApplicationServiceJSONFacade extracts the
’DictionaryArray’ attribute of JSON Object and sets it as MessageDataAttributeDTO's dictionaryArray
attribute.

17 Extensibility of Domain Objects - Dictionary Pattern | 285

17.3 Dictionary Data Transfer from UI to Host

Figure 17–7 Host Server JSONFacade extracts the attribute of JSON Object

In the Host Server <ApplicationService>JSONFacade extracts the "DictionaryArray" attribute of
JSON Object and sets it as <DomainObjectDTO>'s dictionaryArray attribute.

The above process uses AbstractJSONFacade's getDictionaryArray method that unmarshalls the
’genericName’ and ’value’ from JSON Object to get the dictionaryArray attribute.

286 | Oracle Banking Enterprise Originations Host Extensibility Guide

17.3 Dictionary Data Transfer from UI to Host

Figure 17–8 AbstractJSONFacade's getDictionaryArray method

AbstractJSONFacade's getDictionaryArray method that unmarshalls the "genericName" and "value"
from JSON Object to get the dictionaryArray attribute

17.3.2 Customized Domain Object DTO transfer from Host to UI
In the Host Server <ApplicationService>JSONFacade constructs the JSON Object for <DomainObjectDTO>
and the dictionaryArray of DataTransferObject

MessageTemplateApplicationServiceJSONFacade's method serializeMessageDataAttributeDTOArray in
Host Server constructs the JSON Object for MessageTemplateDTO which includes
MessageTemplateAttributeDTO and the dictionaryArray of DataTransferObject as shown below:

17 Extensibility of Domain Objects - Dictionary Pattern | 287

17.3 Dictionary Data Transfer from UI to Host

Figure 17–9 Host Server JSONFacade constructs the JSON Object

In the Host Server <ApplicationService>JSONFacade constructs the JSON Object for
<DomainObjectDTO> and the dictionaryArray of DataTransferObject

The above process uses AbstractJSONFacade's serializeDictionaryArray to include ’genericName’ and
’value’ attributes of NameValuePairDTOArray which was inside dictionaryArray attribute of
MessageTemplateAttributeDTO.

288 | Oracle Banking Enterprise Originations Host Extensibility Guide

17.3 Dictionary Data Transfer from UI to Host

Figure 17–10 AbstractJSONFacade's serializeDictionaryArray to include Generic Name and Value attributes

AbstractJSONFacade's serializeDictionaryArray to include "genericName" and "value" attributes of
NameValuePairDTOArray

In the UI Server, <ApplicationService>JSONClient extracts the ’DictionaryArray’ attribute of JSON Object
and sets it as <DomainObjectDTO>DTO's dictionaryArray attribute.

In the UI Server, MessageTemplateApplicationServiceJSONClient extracts the ’DictionaryArray’ attribute of
JSON Object and sets it as MessageDataAttributeDTO's dictionaryArray attribute.

17 Extensibility of Domain Objects - Dictionary Pattern | 289

17.3 Dictionary Data Transfer from UI to Host

Figure 17–11 UI Server JSONClient extracts the DictionaryArray attribute

In the UI Server, <ApplicationService>JSONClient extracts the "DictionaryArray" attribute of JSON
Object and sets it as <DomainObjectDTO>DTO's dictionaryArray attribute

The above process uses AbstractJSONBindingStub's getDictionaryArray method that unmarshalls the
’genericName’ and ’value’ from JSON Object to get the dictionaryArray attribute.

290 | Oracle Banking Enterprise Originations Host Extensibility Guide

17.4 Translating Dictionary Data into Custom Domain Object

Figure 17–12 AbstractJSONBindingStub's getDictionaryArray method

AbstractJSONBindingStub's getDictionaryArray method that unmarshalls the "genericName" and
"value" from JSON Object

The provision of marshalling and un-marshalling of ’dictionaryArray’ attribute of all DataTransferObjects has
been included in the JSON layer for all application services.

17.4 Translating Dictionary Data into Custom Domain Object
This section describes the details of translating dictionary data into custom domain object.

17.4.1 Instantiation and Persistence of Custom Domain Objects
If a method has an input parameter that is a DataTransferObject, the first line of the method in the assembler
will be of the form:

(populateDataTransferObjectDTOMap(’Fully Qualified Name of this DataTransferObject>’,
dataTransferObject);

This method is defined in AbstractAssembler.java which newly instantiates
referenceDataTransferObjectDTOMap if required and populates the map with the above entry.

This map is used as a set of globally available DataTransferObject's which can be retrieved by invoking
another method defined in AbstractAssembler.java which is of the form:

retrieveDataTransferObjectDTOMapElement(’<Fully Qualified Name of
this DataTransferObject >’);

Whenever any AbstractDomainObject is instantiated, the Customized AbstractDomainObject should be
instantiated instead of the original AbstractDomainObject wherever applicable.

17 Extensibility of Domain Objects - Dictionary Pattern | 291

17.4 Translating Dictionary Data into Custom Domain Object

The AbstractDomainObject is instantiated with the help of the below code fragment:

IAbstractDomainObject domainObject=null;
try {
if (retrieveDataTransferObjectDTOMapElement("
<Fully Qualified Name of DataTransferObject from Naming Convention
Rules >").getDictionaryArray() == null) {
domainObject = <Current Process Of Instantiation>;
} else {
domainObject=(IAbstractDomainObject)
getCustomizedDomainObject (retrieveDataTransferObjectDTOMapElement
(
"<Fully Qualified Name of DataTransferObject from Naming Convention
Rules >"));

/********* In AbstractAssembler.java, we have defined the method
public IAbstractDomainObject getCustomizedDomainObject
(DataTransferObject dataTransferObjectDTO)

This method instantiates the Customized AbstractDomainObject based
on the value of the attribute "dictionaryArray" of the
DataTransferObject passed as the only parameter. The method also
populates this customized domain object with the extra attribute
values also from the "dictionaryArray" attribute and finally
returns this instance of the Customized Domain Object.
*********/
}
} catch (Exception e) {
domainObject = <Current Process Of Instantiation>;
}

17.4.2 Fetching of Customized Domain Objects
If a method has an input parameter that is an IAbstractDomainObject, the first line of the method in the
assembler will be of the form:

populateAbstractDomainObjectMap("<Fully_Qualified_Name_
IAbstractDomainObject>", abstractDomainObject);

This method is defined in AbstractAssembler.java which newly instantiates
referenceAbstractDomainObjectMap if required and populates the map with the above entry.

This map is used as a set of globally available IAbstractDomainObject's which can be retrieved by invoking
another method defined in AbstractAssembler.java which is of the form:

retrieveDataTransferObjectDTOMapElement("<Fully_Qualified_Name_
IAbstractDomainObject>");

Whenever any DataTransferObject is instantiated, we populate its ’dictionaryArray’ attribute immediately
after it's instantiation.

In AbstractAssembler.java, we have defined the method à

public Dictionary[] getDictionaryArray(IAbstractDomainObject obj)

292 | Oracle Banking Enterprise Originations Host Extensibility Guide

17.4 Translating Dictionary Data into Custom Domain Object

This method creates and returns a dictionary array from the IAbstractDomainObject passed to it as input
parameter.

Example of final piece of code:

Figure 17–13 Instantiation of DataTransferObjects

17.4.3 Defining of Customized Domain Objects
When we are viewing the customized attributes on the screen, we need to fetch the Customized Abstract
Domain Object data into the Domain Object DTO. This is why the customized attributes in the Customized
Domain Object have to be populated in the dictionary array of the Domain Object DTO.

This is done in the AbstractAssembler which returns the dictionary array of the Domain Object DTO based on
the Abstract Domain Object passed to it, through a method called "getDictionaryArray". To achieve this, the
AbstractAssembler firstly needs to understand which is a customized domain object.

In preferences.xml we have defined the following:

<Preference name="CustomizedAbstractDomainObjectConfig"
PreferencesProvider="com.ofss.fc.infra.config.impl.DBBasedProperty
Provider"
parent="jdbcpreference"
propertyFileName="select prop_id, prop_value from flx_fw_config_
all_b where category_id = 'CustomizedAbstractDomainObjectConfig'"
syncTimeInterval="600000" />

We have to insert a record in table flx_fw_config_all_b to identify a Customized Domain Object in the
following manner.

17 Extensibility of Domain Objects - Dictionary Pattern | 293

17.5 Customized Domain Object ORM Configuration

INSERT INTO FLX_FW_CONFIG_ALL_B (PROP_ID, CATEGORY_ID, PROP_VALUE,
FACTORY_SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY,
CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS_
FLAG, OBJECT_VERSION_NUMBER)
VALUES ('com.ofss.fc.domain.ep.entity.action.ActivityEventAction',
'CustomizedAbstractDomainObjectConfig',
'com.ofss.fc.domain.ep.entity.action.CustomizedActivityEventActio
n', 'y', '',
'Customized object of
com.ofss.fc.domain.ep.entity.action.ActivityEventAction',
'ofssuser',
'09-SEP-14 05.53.56.000000 PM', 'ofssuser', '09-SEP-14
05.53.56.000000 PM', 'A', 1);

The AbstractAssembler identifies a customized domain object by deciphering the above information.

So every Customized Domain Object has to be defined in flx_fw_config_all_b with category_id =
'CustomizedAbstractDomainObjectConfig'.

Only if such a definition exists, the abstract domain object passed is identified to be a customized domain
object and the corresponding Domain Object DTO is provided with its dictionary array.

However, if the abstract domain object passed is not identified to be a customized domain object, the
corresponding Domain Object DTO is provided with a dictionary array which has null value.

17.5 Customized Domain Object ORM Configuration
This section describes the details of customized domain object ORM configuration.

17.5.1 Case 1 - Non-Inheritance based mapping
Non-inheritance based mapping refers to those domain objects that are not mapped as a Subclass or Union-
Subclass or Joined-Subclass. Let us take the example of the class MessageDataAttribute. The fully qualified
class name is ’com.ofss.fc.domain.ep.entity.dispatch.message.MessageDataAttribute’. This class has been
mapped in ep.messagetemplate.orm.xml.

Adding Discriminator column mapping in existing ORM file

Add the discriminator as:- <discriminator column=" DOMAIN_OBJECT_EXTN" type="string"/>

For the purpose of identifying the extended domain object in the corresponding table, add a 'discriminator
column' in the corresponding table and update the ORM file. The name of the discriminator column used is
DOMAIN_OBJECT_EXTN and the default discriminator value defined is 'CZ'

So any normal Create or Update operation will have a value 'CZ' for DOMAIN_OBJECT_EXTN column.

294 | Oracle Banking Enterprise Originations Host Extensibility Guide

17.5 Customized Domain Object ORM Configuration

Figure 17–14 Adding Discriminator ColumnMapping in Existing ORM file

A new ORM file mapping to Customized Domain Object is added

The following figure explains adding a new ORM file mapping to Customized Domain Object.

Figure 17–15 ORM File Mapping to Customized Domain Object

For example a new file CustomizedMessageDataAttribute.orm.xml is introduced to include the extra
attributes added by consulting or any other third party along with the discriminator value. This file will map to
the new customized domain object and will be extending the existing Abstract Domain Object.

Adding new Java File corresponding to the Customized Domain Object

The following figure explains adding new Java file corresponding to the Customized Domain Object.

17 Extensibility of Domain Objects - Dictionary Pattern | 295

17.5 Customized Domain Object ORM Configuration

Figure 17–16 Adding New Java File to the Customized Domain Object

A Java File is added corresponding to the existing Abstract Domain Object. This will be extending the
Abstract Domain Object that we are extending.

Adding extra columns along with the discriminator column to the domain object table

The following figure explains adding a new Java file corresponding to the Customized Domain Object.

Figure 17–17 Adding Extra Columns along with the Discriminator Column

296 | Oracle Banking Enterprise Originations Host Extensibility Guide

17.5 Customized Domain Object ORM Configuration

The extra columns along with the discriminator column have to be added to the domain object table of this
domain object.

In case of Creation or Updation of ’CustomizedMessageDataAttribute’ instead of ’MessageDataAttribute’ the
new discriminator column ’DOMAIN_OBJECT_EXTN’ has the value of ’FCMA’ instead of ’CZ’ and an
additional value in columns ’CUSTOM_VALUE1’ and ’CUSTOM_VALUE2’ in table FLX_EP_MSG_ATTR_B.

In case of Creation or Updation of ’MessageDataAttribute’ the new discriminator column ’DOMAIN_
OBJECT_EXTN’ has the value of ’CZ’ and NULL values in columns ’CUSTOM_VALUE1’ and ’CUSTOM_
VALUE2’ in table FLX_EP_MSG_ATTR_B.

17.5.2 Case 2 - Mapped as ORM Subclass
The maintenance domain objects which are mapped as a Subclass already have an existing discriminator.
For the purpose of identifying the extended domain object in the same table, we shall be using the existing
discriminator.

Let us take the example of ’com.ofss.fc.domain.party.entity.contact.Cellular’. This is mapped as a subclass
in ContactPoint.orm.xml.

A new ORM file mapping to Customized Domain Object is added

The following figure explains adding a new ORM file mapping to Customized Domain Object.

Figure 17–18 Adding a New ORM File Mapping to Customized Domain Object

A new file FirstCustomizedCellular.orm.xml is introduced to include the extra attributes added by consulting
or any other third party along with the discriminator value ’FCLR’. This file will map to the new customized
domain object ’com.ofss.fc.domain.party.entity.contact.FirstCustomizedCellular’ and will be extending the
existing Abstract Domain Object which is ’com.ofss.fc.domain.party.entity.contact.Cellular’.

Adding new Java File corresponding to the Customized Domain Object

The following figure explains adding a new Java File corresponding to the Customized Domain Object.

17 Extensibility of Domain Objects - Dictionary Pattern | 297

17.5 Customized Domain Object ORM Configuration

Figure 17–19 Adding New Java File to Customized Domain Object

A Java File ’com.ofss.fc.domain.party.entity.contact.FirstCustomizedCellular’ is added corresponding to the
existing Abstract Domain Object. This will be extending the Abstract Domain Object that we are extending.

Adding Extra Columns to the Domain Object Table

The extra columns have to be added to the domain object table of this domain object.

In this case GRAPHICS_MODE column is added to FLX_PI_CONTACT_POINT table.

So in case of Creation or Updation of ’FirstCustomizedCellular’ instead of ’Cellular’ the existing discriminator
column ’CONTACT_POINT_TYPE’ has the value of ’FCLR’ instead of ’CLR’ and an additional value in
column ’GRAPHICS_MODE’ in table FLX_PI_CONTACT_POINT.

And in case of Creation or Updation of ’Cellular’ the existing discriminator column ’CONTACT_POINT_
TYPE’ has the value of ’CLR’ and NULL values in column ’GRAPHICS_MODE’ in table FLX_PI_
CONTACT_POINT.

17.5.3 Case 3 - Mapped as ORM Union-Subclass or Joined-Subclass
Let us take the example of ’com.ofss.fc.domain.lcm.entity.limits.facility.proposedFacility.ProposedFacility’.
This class has been mapped in Facility.orm.xml as a union subclass.

Use the customized entity
’com.ofss.fc.cz.nab.domain.lcm.entity.limits.facility.proposedFacility.CustomizedProposedFacility’ for the
purpose of extensibility of this domain object.

Adding Discriminator in ORM file where base class has been mapped is not required

The existing Facility.orm.xml file which contains the mapping for
"com.ofss.fc.domain.lcm.entity.limits.facility.proposedFacility.ProposedFacility" is not required to be altered.

A new ORM file mapping to Customized Domain Object is added

The following figure explains adding a new ORM file mapped to new Customized Domain Object.

298 | Oracle Banking Enterprise Originations Host Extensibility Guide

17.5 Customized Domain Object ORM Configuration

Figure 17–20 New ORM File Mapping

For example, a new file CustomizedProposedFacility.orm.xml is introduced to include the extra attributes
added by consulting or any other third party. This file will map to the new customized domain object and will
be extending the existing Abstract Domain Object.

Adding new Java File corresponding to the Customized Domain Object

Figure 17–21 Adding New Java File

17 Extensibility of Domain Objects - Dictionary Pattern | 299

17.5 Customized Domain Object ORM Configuration

A Java File ’CustomizedProposedFacility.java’ is added. This extends the Abstract Domain Object that we
are extending.

Create a new table CZ_NAB_LM_PROPOSED_FACILITY similar to the Domain Object Table

We are extending that is,FLX_LM_PROPOSED_FACILITY_B and add the extra columns to the new table.

Figure 17–22 Create a New Table CZ_NAB_LM_PROPOSED_FACILITY

Adding Customized JPQL Queries whenever the Domain Object is Referred

The following file has the attribute ’CustomizedORMQueriesConfig’ to fire the Customized JPQL if required:
Preferences.xml.

The attribute is as follows:

<Preference name="CustomizedORMQueriesConfig"

PreferencesProvider="com.ofss.fc.infra.config.impl.JavaConstantsCo
nfigProvider"
overriddenBy="CustomizedORMQueriesConfigOverride"
parent="jdbcpreference"
propertyFileName="com.ofss.fc.common.CustomizedORMQueriesConfig"
syncTimeInterval="600000" />

The following files have also been changed to fire the Customized JPQL if required.

com.ofss.fc.framework.domain@/com/ofss/fc/framework/repository/AbstractRepository.java

com.ofss.fc.common.jar@/src/com/ofss/fc/common/CustomizedORMQueriesConfig.java

The following file has the attribute ’CustomizedORMQueriesConfigOverride’ to fire the Customized JPQL if
required.

<lzn>/au/config/Preferences.xml

<Preference name="CustomizedORMQueriesConfigOverride"

PreferencesProvider="com.ofss.fc.infra.config.impl.JavaConstantsCo
nfigProvider"
parent=""
propertyFileName="com.ofss.fc.lz.au.common.CustomizedORMQueriesCon
fig"
syncTimeInterval="600000"/>

300 | Oracle Banking Enterprise Originations Host Extensibility Guide

17.6 Extensibility using Dictionary in Origination Application

Therefore, com.ofss.fc.lz.au.common.CustomizedORMQueriesConfig.java file needs to have the old JPQL
query name mapped to the customized query name for this domain object.

Similarly, extensibility of domain objects mapped as joined-subclass can also be done.

17.5.4 Case 4 - Mapped as ORM Component
This relates to only those component classes that implements IAbstractDomainObject and should be
extensible.

The Java Class corresponding to this component class has to be extended and this new Java Class along
with the additional attributes have to be mapped in the ORM file.

The corresponding additional columns have to be added in the domain object table in question.

17.6 Extensibility using Dictionary in Origination Application
In this section, the Application Form page (Fast path: OR097) of the Oracle Banking Platform is taken as an
example.

17.6.1 ICustomDataHandler's as DictionaryArray Interceptor
The backing bean method of OR097 - Application Form
’com.ofss.fc.ui.taskflows.origination.application.applicationForm.view.backing.ApplicationForm.moveNext
()’ calls implementation of
com.ofss.fc.ui.taskflows.origination.application.common.handler.ICustomDataHandler.

Implementation of com.ofss.fc.ui.taskflows.origination.application.common.handler.ICustomDataHandler
can be configured in OriginationConfiguration.properties. Property name is customDataHandler

ApplicationFormHelper.getSubmissionInputDTO() will give the master DTO for the application form.

17 Extensibility of Domain Objects - Dictionary Pattern | 301

17.6 Extensibility using Dictionary in Origination Application

Figure 17–23 CustomDataHandler's as DictionaryArray Interceptor

This hook should be used to populate the dictionary array of the concerned DTO at the correct stage of
application form entry.

17.6.2 Create Customized Abstract Domain Object Class
A new Java File is added corresponding to the existing Abstract Domain Object. This extends the Abstract
Domain Object that we are extending.

302 | Oracle Banking Enterprise Originations Host Extensibility Guide

17.6 Extensibility using Dictionary in Origination Application

Figure 17–24 Create Customized Abstract Domain Object Class

17.6.3 Create Customized Abstract Domain Object ORM Mapping File
A new file .orm.xml is introduced to include the extra attributes added by consulting or any other third party
along with the discriminator value. This file maps to the new customized domain object and extends the
existing Abstract Domain Object.

Figure 17–25 Create Customized Abstract Domain Object ORM Mapping File

17.6.4 Create Customized Abstract Domain Object Attribute Columns
The extra columns have to be added to the domain object table of this domain object.

Figure 17–26 Create Customized Abstract Domain Object Attribute Columns

17 Extensibility of Domain Objects - Dictionary Pattern | 303

17.7 Extensibility using Attributes of Various Supported Datatypes

In case of Creation or Updation of ’CustomizedApplicant’ instead of ’Applicant’ the existing discriminator
column ’DOMAIN_OBJECT_EXTN’ has the value of ’CUST’ instead of ’CZ’ and an additional value in
column ’CRIMINAL_RECORD’ in table FLX_OR_APPLICANTS.

In case of Creation or Updation of ’Applicant’ the existing discriminator column ’DOMAIN_OBJECT_EXTN’
has the value of ’CZ’ and NULL values in column ’CRIMINAL_RECORD’ in table FLX_OR_APPLICANTS.

Similarly, other DomainObjectDTO's can have their dictionary arrays populated in the ICustomDataHandler
class being used and the corresponding customized domain object will get persisted instead of the usual
domain object.

17.7 Extensibility using Attributes of Various Supported
Datatypes
Extensibility of maintenance domain objects now supports extended attributes with all data types that have a
public constructor with a single argument of data-type "String".

This includes attributes of data-type "com.ofss.fc.datatype.Date" whose "toString()" method should be
invoked to set its value in NameValuePairDTO array element of Dictionary array. The value set is of the
format given in root.properties file.

Additionally extensibility of maintenance domain objects is now also supporting extended attributes with
enumeration data types defined in "com.ofss.fc.enumeration" project.

Here is an example of extensibility of "com.ofss.fc.domain.ep.entity.dispatch.message.MessageTemplate"
using attributes of different supported datatypes.

The following customized class is created that contains the additional attributes.

304 | Oracle Banking Enterprise Originations Host Extensibility Guide

17.7 Extensibility using Attributes of Various Supported Datatypes

Figure 17–27 Customized Message Template Class

The following extra columns have been added in the domain object table "flx_ep_msg_tmpl_b".

17 Extensibility of Domain Objects - Dictionary Pattern | 305

17.7 Extensibility using Attributes of Various Supported Datatypes

Figure 17–28 Domain Object Table

The following ORM file maps the customized class attributes with the table columns.

Figure 17–29 ORM File

The following JUnit test case has been used to test a "create" operation.

306 | Oracle Banking Enterprise Originations Host Extensibility Guide

17.7 Extensibility using Attributes of Various Supported Datatypes

Figure 17–30 JUnit Test Case

The above JUnit runs to add the following record in the table.

Figure 17–31 JUnit Adds Table Record

Similarly, a JUnit is run to do "fetch" operation. This fetches the customized record whose dictionary array
values have been shown below.

17 Extensibility of Domain Objects - Dictionary Pattern | 307

17.7 Extensibility using Attributes of Various Supported Datatypes

Figure 17–32 Dictionary Array Values

308 | Oracle Banking Enterprise Originations Host Extensibility Guide

17.8 Customized Domain Object having Collection of Objects as Attributes

17.8 Customized Domain Object having Collection of Objects
as Attributes
Figure 17–33 Customized Domain Object having collection of Objects as Attributes

17 Extensibility of Domain Objects - Dictionary Pattern | 309

17.8 Customized Domain Object having Collection of Objects as Attributes

Figure 17–34 Member Attributes of Customized Domain Object

Figure 17–35 Dictionary Array Elements

To construct a CustomizedMessageTemplate having 2 elements in messageAttributeList and 1 element in
messageRecipientList, set the dictionaryArray of MessageTemplateDTO as follows:

The dictionaryArray has four elements as highlighted in the above figure.

n The 0th dictionaryArray element will have NameValuePairDTO array of non-collection attributes. This
element's fullyQualifiedClassName will be the fully qualified class name of the customized domain
object that is being constructed.

310 | Oracle Banking Enterprise Originations Host Extensibility Guide

17.8 Customized Domain Object having Collection of Objects as Attributes

n The 1st dictionaryArray element will have NameValuePairDTO array of 1st element of 1st collection
attribute. This element's fullyQualifiedClassName will be the fully qualified class name of the
customized domain object that is being constructed, appended with "." and 1st collection attribute
name.

n The 2nd dictionaryArray element will have NameValuePairDTO array of 2nd element of 1st collection
attribute. This element's fullyQualifiedClassName will be the fully qualified class name of the
customized domain object that is being constructed, appended with "." and 1st collection attribute
name.

n The 3rd dictionaryArray element will have NameValuePairDTO array of 1st element of 2nd collection
attribute. This element's fullyQualifiedClassName will be the fully qualified class name of the
customized domain object that is being constructed, appended with "." and 2nd collection attribute
name.

Figure 17–36 Customized Domain Object constructed by AbstractAssembler

17 Extensibility of Domain Objects - Dictionary Pattern | 311

17.9 Limitation to Extensibility using Dictionary Pattern

Figure 17–37 Dictionary Array returned by AbstractAssembler

17.9 Limitation to Extensibility using Dictionary Pattern
Extensibility of domain objects using Dictionary pattern is not applicable to those Maintenance Domain
Objects that implement com.ofss.fc.framework.domain.search.ISearchableEntity.

The following is the list of the ISearchableEntity:

n com.ofss.fc.domain.config.entity.OBPConfigurationProperty

n com.ofss.fc.domain.origination.entity.core.submission.Submission

n com.ofss.fc.domain.party.entity.textsearch.PartyAggregateSummary

n com.ofss.fc.domain.account.entity.statement.impl.TDFinancialStatementItem

n com.ofss.fc.domain.account.entity.statement.impl.LoanFinancialStatementItem

n com.ofss.fc.domain.account.entity.statement.impl.DDFinancialStatementItem

n com.ofss.fc.domain.account.entity.statement.impl.DDNonFinancialStatementItem

n com.ofss.fc.domain.account.entity.statement.impl.LoanNonFinancialStatementItem

n com.ofss.fc.domain.account.entity.transactingparty.TransactingParty

n com.ofss.fc.domain.lcm.entity.collaterals.businessassets.AllPAPExcept

n com.ofss.fc.domain.lcm.entity.collaterals.businessassets.BusinessAssets

n com.ofss.fc.domain.lcm.entity.collaterals.businessassets.AllPAP

n com.ofss.fc.domain.lcm.entity.collaterals.fixedasset.computerhardware.ComputerHardware

n com.ofss.fc.domain.lcm.entity.collaterals.fixedasset.Machinery

312 | Oracle Banking Enterprise Originations Host Extensibility Guide

17.9 Limitation to Extensibility using Dictionary Pattern

n com.ofss.fc.domain.lcm.entity.collaterals.fixedasset.computersoftware.ComputerSoftware

n com.ofss.fc.domain.lcm.entity.collaterals.fixedasset.FixedAsset

n com.ofss.fc.domain.lcm.entity.collaterals.fixedasset.Furniture

n com.ofss.fc.domain.lcm.entity.collaterals.industrybusinessvalue.IndustryBusinessValue

n com.ofss.fc.domain.lcm.entity.collaterals.agriculture.Agriculture

n com.ofss.fc.domain.lcm.entity.collaterals.agriculture.crop.Crops

n com.ofss.fc.domain.lcm.entity.collaterals.agriculture.livestock.LiveStocks

n com.ofss.fc.domain.lcm.entity.collaterals.agreementandundertaking.NonFinancialAgreementAndUnd
ertaking

n com.ofss.fc.domain.lcm.entity.collaterals.agreementandundertaking.AgreementAndUndertaking

n com.ofss.fc.domain.lcm.entity.collaterals.currentassets.inventorystock.InventoryStocks

n com.ofss.fc.domain.lcm.entity.collaterals.currentassets.CurrentAssets

n com.ofss.fc.domain.lcm.entity.collaterals.currentassets.bookdebt.BookDebts

n com.ofss.fc.domain.lcm.entity.collaterals.currentassets.receivable.Receivable

n com.ofss.fc.domain.lcm.entity.collaterals.automobile.PassengerVehicle

n com.ofss.fc.domain.lcm.entity.collaterals.automobile.Automobile

n com.ofss.fc.domain.lcm.entity.collaterals.automobile.GoodsVehicle

n com.ofss.fc.domain.lcm.entity.collaterals.investmentsecurities.InvestmentSecurities

n com.ofss.fc.domain.lcm.entity.collaterals.investmentsecurities.SharesStock

n com.ofss.fc.domain.lcm.entity.collaterals.investmentsecurities.InvestmentSecurity

n com.ofss.fc.domain.lcm.entity.collaterals.intangibleasset.IntangibleAsset

n com.ofss.fc.domain.lcm.entity.collaterals.other.OtherCollateral

n com.ofss.fc.domain.lcm.entity.collaterals.insurance.lifeinsurance.LifeInsurance

n com.ofss.fc.domain.lcm.entity.collaterals.insurance.Insurance

n com.ofss.fc.domain.lcm.entity.collaterals.bullion.Bullion

n com.ofss.fc.domain.lcm.entity.collaterals.cash.TermDeposit

n com.ofss.fc.domain.lcm.entity.collaterals.cash.CashDeposit

n com.ofss.fc.domain.lcm.entity.collaterals.Collateral

n com.ofss.fc.domain.lcm.entity.collaterals.proposedcollateral.ProposedCollateralRequest

n com.ofss.fc.domain.lcm.entity.collaterals.proposedcollateral.IPARequest

n com.ofss.fc.domain.lcm.entity.collaterals.proposedcollateral.SubDivisionRequest

n com.ofss.fc.domain.lcm.entity.collaterals.proposedcollateral.ConsolidationRequest

n com.ofss.fc.domain.lcm.entity.collaterals.guarantee.PersonalGuarantee

n com.ofss.fc.domain.lcm.entity.collaterals.guarantee.Guarantee

n com.ofss.fc.domain.lcm.entity.collaterals.guarantee.FamilyGuarantee

17 Extensibility of Domain Objects - Dictionary Pattern | 313

17.9 Limitation to Extensibility using Dictionary Pattern

n com.ofss.fc.domain.lcm.entity.collaterals.guarantee.BankGuarantee

n com.ofss.fc.domain.lcm.entity.collaterals.guarantee.GuaranteeAndIndemnity

n com.ofss.fc.domain.lcm.entity.collaterals.guarantee.GovernmentGuarantee

n com.ofss.fc.domain.lcm.entity.collaterals.realestate.IndustrialProperty

n com.ofss.fc.domain.lcm.entity.collaterals.realestate.WaterProperty

n com.ofss.fc.domain.lcm.entity.collaterals.realestate.CommercialProperty

n com.ofss.fc.domain.lcm.entity.collaterals.realestate.RealEstate

n com.ofss.fc.domain.lcm.entity.collaterals.realestate.ResidentialProperty

n com.ofss.fc.domain.lcm.entity.collaterals.realestate.RuralProperty

n com.ofss.fc.domain.lcm.entity.collaterals.artwork.ArtWork

n com.ofss.fc.domain.lcm.entity.collaterals.aircraft.smallaircraft.SmallAirCraft

n com.ofss.fc.domain.lcm.entity.collaterals.aircraft.cargoaircraft.CargoAirCraft

n com.ofss.fc.domain.lcm.entity.collaterals.aircraft.airframe.AirFrame

n com.ofss.fc.domain.lcm.entity.collaterals.aircraft.passengeraircraft.PassengerAirCraft

n com.ofss.fc.domain.lcm.entity.collaterals.aircraft.helicopter.HeliCopter

n com.ofss.fc.domain.lcm.entity.collaterals.aircraft.aircraftengine.AirCraftEngine

n com.ofss.fc.domain.lcm.entity.collaterals.aircraft.otheraircraft.OtherAirCraft

n com.ofss.fc.domain.lcm.entity.collaterals.aircraft.AirCraft

n com.ofss.fc.domain.lcm.entity.collaterals.ship.Ship

n com.ofss.fc.domain.lcm.entity.collaterals.license.WaterLicense

n com.ofss.fc.domain.lcm.entity.collaterals.license.License

n com.ofss.fc.domain.lcm.entity.collaterals.license.liquorlicense.LiquorLicense

n com.ofss.fc.domain.lcm.entity.collaterals.license.fishinglicense.FishingLicense

n com.ofss.fc.domain.lcm.entity.collaterals.license.managementrights.ManagementRights

n com.ofss.fc.domain.lcm.entity.collaterals.license.taxilicense.TaxiLicense

n com.ofss.fc.domain.pc.entity.institution.FinancialInstitution

n com.ofss.fc.framework.audit.AuditItem

314 | Oracle Banking Enterprise Originations Host Extensibility Guide

18 OCH Integration

This chapter describes how additional information can be added to an Oracle Customer Hub (henceforth
mentioned as OCH) publish request. Publishing additional information can be required base on the client
requirements, and hence OBP Integration adapters and assemblers need to be extended for such additional
informations. Integration adapters are used for gathering data related to a customer, which is further used by
assemblers to map OBP DTO to AIA Enterprise Business Objects (henceforth mentioned as EBOs).

OBP OCH integration involves the following steps:

1. Fetching all the data related to customer depending on the use case

2. Conversion of OBP DTO to AIA EBOs

3. Posting the EBO to AIA queue using Asynch JMS protocol

Integration adapters are invoked from the post hook of application service extensions. After the successful
execution of the use case, adapters further call Integration assemblers for conversion of DTO to EBO.

After conversion, adapters post the serialized EBO request to AIA queue using Integration strategy, which is
fetched on the basis of use case.

A few examples of Integration strategies are as follows:

n AsyncFireForgetIntegrationStrategyJMS: It is used in use cases where a response is not expected
from OCH. Integration use cases involving creation/updation of customer information use this
strategy.

n SyncIntegrationStrategy: It is used where a response is required from OCH. Uses cases, like Party
Search or Party Deduplication where customer information is fetched from OCH, use this strategy.

A few examples of Integration adapters are:

n UpdatepartyAdapter: It is used for populating customer information.

n ChangeAccountTitleAdapter: It is used in use cases where customer's account information is to be
published to OCH.

A few examples of Integration assemblers are:

n UpdatePartyAssembler: It is invoked from UpdatepartyAdapter and maps customer information to
EBO attributes.

n CreateAccountAssember: It is invoked from ChangeAccountTitleAdapter and maps customer's
account information to respective EBO attribute.

18.1 Integration Adapter Interface
OBP framework contains an interface, IIntegrationAdapter which provides two basic methods for OCH
integration.

These two methods must be implemented by any adapter implementing the interface and use them for
publishing data to OCH. Signature of these two methods are:

18 OCH Integration | 315

18.2 Abstract Integration Adapter Class

void update(SessionContext context, DomainObjectDTO dto,
BaseResponse response) throws FatalException;
Object updateWithResponse(SessionContext context, DomainObjectDTO
dto, BaseResponse response) throws FatalException;

Update() method is used in the use cases where response it not expected from OCH.

UpdateWithResponse() method is used when the data is required from OCH.

Figure 18–1 Integration Adapter Interface

18.2 Abstract Integration Adapter Class
OBP framework has an abstract class AbstractIntegrationAdapter which provides methods for common data,
such as audit information or session context etc. This abstract class implements IIntegrationAdapter
interface.

All adapters must extend AbstractIntegrationAdapter and implement the two methods defined in the
IIntegrationAdapter interface.

316 | Oracle Banking Enterprise Originations Host Extensibility Guide

18.3 Sample Integration Adapter

Figure 18–2 Abstract Integration Adapter Class

18.3 Sample Integration Adapter
The following figure is a sample adapter for customer information:

18 OCH Integration | 317

18.4 Integration Abstract Assembler

Figure 18–3 Sample Integration Adapter

18.4 Integration Abstract Assembler
OBP framework has as abstract class AbstractAssembler which provides design for DTO to EBO
conversion. These methods are used while mapping DTO to EBO and vice versa.

Signature of methods are:

public abstract T toCanonicalModel(D dto) throws FatalException;
public abstract D fromCanonicalModel(T domainObject) throws
FatalException;

toCanonicalModel() is used when DTO is to be converted to EBO and fromCanonicalModel() in the other
case.

318 | Oracle Banking Enterprise Originations Host Extensibility Guide

18.5 Sample Assembler

Figure 18–4 Integration Abstract Assembler

All the assemblers must implement these two methods for conversion of DTO to EBO and vice versa.

Assemblers also populate the header of the request which is posted to the queue.

18.5 Sample Assembler
A sample assembler which extends AbstractAssembler should be like:

18 OCH Integration | 319

18.5 Sample Assembler

Figure 18–5 Sample Assembler

User can extend assemblers to add more DTO to EBO mapping.

Note

EBOs are generated from AIA wsdl, and can be extended to add extra
fields in the custom tag using the standard AIA extension framework.
For each newly added field, customization developer must set that field
in the assembler.

320 | Oracle Banking Enterprise Originations Host Extensibility Guide

19 Documaker Integration

This chapter describes how additional information can be added to the data sent to Documaker Server.

OBP sends data to Documaker in XML format. So, one XSD per document is created, and using that XSD,
JAXB classes are generated.

19.1 XSD
Example of an existing XSD is AddressChangeLetter.xsd.

Figure 19–1 AddressChangeLetter.xsd

Additional elements can be added by creating new XSD and importing current XSD.

For Example,

CustomizedAddressChangeLetter can be created by importing existingAddressChangeLetter.xsd

19 Documaker Integration | 321

19.2 JAXB Classes

Figure 19–2 CustomizedAddressChangeLetter.xsd

19.2 JAXB Classes
JAXB classes forAddressChangeLetter.xsd are present inside com.ofss.fc.integration.content project.

322 | Oracle Banking Enterprise Originations Host Extensibility Guide

19.2 JAXB Classes

Figure 19–3 JAXB Classes

For customization, JAXB classes need to be generated from customized XSD.

Figure 19–4 Generate JAXB Classes from Customized XSD

19 Documaker Integration | 323

19.2 JAXB Classes

Figure 19–5 JAXB Classes Customized XSD

Once classes are generated, it should be added under same project.

Figure 19–6 JAXB Classes in Project

324 | Oracle Banking Enterprise Originations Host Extensibility Guide

19.3 Extractors

19.3 Extractors
Extractors are used to extract information from OBP modules. This information is stored in Generated JAXB
Classes.

For example, AddressChangeLetterDataExtractor. In this extractor, fetch all the details from OBP modules
which need to be populated in Address Change Letter and fill all the JAXB classes with those details.

Figure 19–7 AddressChangeLetterDataExtractor

If customization developer needs to add more details to Address Change Letter, then create customized
extractor which extends the existing extractor (that is, AddressChangeLetterDataExtractor) and additional
functionality can be added to new extractor as shown below.

19 Documaker Integration | 325

19.4 Seed Entries

Figure 19–8 Customized AddressChangeLetterDataExtractor

19.4 Seed Entries
This section explains the seed entries.

19.4.1 JAXB Package Entry
Append the package name of created JAXB classes in below seed entry.

Insert into FLX_FW_CONFIG_ALL_B

(PROP_ID,CATEGORY_ID,PROP_VALUE,FACTORY_SHIPPED_FLAG,PROP_
COMMENTS,SUMMARY_TEXT,CREATED_BY,CREATION_DATE,LAST_UPDATED_BY,LAST_
UPDATED_DATE,OBJECT_STATUS_FLAG,OBJECT_VERSION_NUMBER)

values

('JAXB_OBJECT_
CONTEXT','ExtractorFactory','com.ofss.fc.integration.dto.extract.common:com.ofss.fc.integration.dto.extr
act.common.context:com.ofss.fc.integration.dto.extract.documaker:com.ofss.fc.integration.dto.extract.offe
r:com.ofss.fc.integration.dto.extract.party:com.ofss.fc.integration.dto.extract.addresschangeletter','Y','Cont
ext',null,'ofssuser',to_timestamp('08-SEP-14 12.07.32.000000000 PM','DD-MON-RR HH.MI.SS.FF
AM'),'ofssuser',to_timestamp('28-AUG-17 12.07.32.000000000 PM','DD-MON-RR HH.MI.SS.FF
AM'),'A',1);

For example, in our case, customization developer will update this query by appending package name
“com.ofss.fc.integration.dto.extract.customizedaddresschangeletter” to existing one.

Update FLX_FW_CONFIG_ALL_B

Set

PROP_

326 | Oracle Banking Enterprise Originations Host Extensibility Guide

19.4 Seed Entries

VALUE='com.ofss.fc.integration.dto.extract.common:com.ofss.fc.integration.dto.extract.common.context:
com.ofss.fc.integration.dto.extract.documaker:com.ofss.fc.integration.dto.extract.offer:com.ofss.fc.integrat
ion.dto.extract.party:com.ofss.fc.integration.dto.extract.addresschangeletter:
com.ofss.fc.integration.dto.extract.customizedaddresschangeletter'

where PROP_ID =’ 'JAXB_OBJECT_CONTEXT';

19.4.2 Extractor Entry
When a new extractor is created, entry for the same needs to be added.

INSERT INTO FLX_FW_CONFIG_ALL_B (PROP_ID, CATEGORY_ID, PROP_VALUE, FACTORY_
SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY, CREATION_DATE, LAST_
UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS_FLAG, OBJECT_VERSION_NUMBER)
VALUES ('ADDRESS_
CHANGE','ExtractorFactory','com.ofss.fc.app.integration.extractor.AddressChangeDataExtractor','Y','','','o
fssuser',to_date('03/12/2015 12:32:42', 'dd/mm/rrrr hh:mi:ss'),'ofssuser',to_date('03/12/2015 12:32:42',
'dd/mm/rrrr hh:mi:ss'),'A',1);

Customization developer needs to update this query with new extractor name.

UPDATE FLX_FW_CONFIG_ALL_B SET PROP_VALUE = 'com.ofss.fc.app.integration.extractor.
CustomizedAddressChangeDataExtractor' WHERE PROP_ID = 'LETTER_OF_OFFER';

19 Documaker Integration | 327

	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 About This Guide
	2 Objective and Scope
	2.1 Overview
	2.2 Objective and Scope
	2.2.1 Extensibility Objective

	2.3 Complementary Artefacts
	2.4 Out of Scope

	3 Overview of Use Cases
	3.1 Extensibility Use Cases
	3.1.1 Extending Service Execution
	3.1.2 OBP Application Adapters
	3.1.3 Extending Business Policy
	3.1.4 User Defined Fields
	3.1.5 Batch Framework Extension
	3.1.6 Uploaded File Processing
	3.1.7 Alert Extension
	3.1.8 Create New Reports Using Oracle Analytics Publisher
	3.1.9 Security Customization
	3.1.10 Facts and Business Rules
	3.1.11 Composite Application Service
	3.1.12 ID Generation
	3.1.13 OCH Integration
	3.1.14 Documaker Integration

	4 Extending Service Executions
	4.1 Service Extension – Extending the app Layer
	4.1.1 Application Service Extension Interface
	4.1.2 Default Application Service Extension
	4.1.3 Application Service Extension Executor
	4.1.4 Extension Configuration
	4.1.5 Application Service Extension Using Groovy

	4.2 Extended Application Service Extension – Extending the appx Layer
	4.2.1 Extended Application Service Extension Interface
	4.2.2 Default Implementation of Appx Extension
	4.2.3 Configuration
	4.2.4 Extended Application Service Extension Executor
	4.2.5 Application Service appx Extension using Groovy

	4.3 End-to-End Example of an Extension
	4.4 Support for Middleware Specific Tasks and Application service
	4.4.1 Pre and Post Middleware Specific Transaction Tasks Overview
	4.4.2 Sample Configuration
	4.4.3 Custom Application Service

	5 OBP Proxy Extension
	6 OBP Application Adapters
	6.1 Adapter Implementation Architecture
	6.1.1 Package Diagram
	6.1.2 Adapter Mechanism Class Diagram
	6.1.3 Adapter Mechanism Sequence Diagram

	6.2 Examples of Adapter Implementation
	6.2.1 Example – EventProcessingAdapter
	6.2.2 Example – DispatchAdapter
	6.2.3 Example – Adapter Implementation Using Groovy

	6.3 Customizing Existing Adapters
	6.3.1 Custom Adapter Example – DispatchAdapter
	6.3.2 Custom Adapter Example – PartyKYCCheckAdapter

	7 Business Policy Extension
	7.1 Base Implementation of Business Policy
	7.2 Extending Business Policy
	7.3 Configuration
	7.4 Extensions Using Groovy

	8 Batch Framework Extensions
	8.1 Typical Business Day in OBP
	8.2 Overview of Categories
	8.2.1 Beginning of Day (BOD)
	8.2.2 Cut-off
	8.2.3 End of Day (EOD)
	8.2.4 Internal EOD
	8.2.5 Statement Generation
	8.2.6 Customer Communication

	8.3 Batch Framework Architecture
	8.3.1 Static View
	8.3.2 Dynamic View

	8.4 Batch Framework Components
	8.4.1 Category Components
	8.4.2 Shell Components
	8.4.3 Stream Components
	8.4.4 Database Components

	8.5 Batch Configuration
	8.5.1 Creation of New Category
	8.5.2 Creation of Bean Based Shell
	8.5.3 Creation of Procedure Based Shell
	8.5.4 Population of Other Parameters

	8.6 Batch Execution

	9 Uploaded File Data Processing
	9.1 Configuration
	9.1.1 Database Tables and Setup
	9.1.2 File Handlers
	9.1.3 Record Handlers for Both Header and Details
	9.1.4 DTO and Keys Classes for Both Header and Details
	9.1.5 XFF File Definition XML

	9.2 Processing
	9.2.1 API Calls in the Handlers
	9.2.2 Processing Adapter

	9.3 Outcome
	9.4 Failure/Exception Handling

	10 Alerts Extension
	10.1 Transaction as an Activity
	10.1.1 Activity Record
	10.1.2 Attaching Events to Activity
	10.1.3 Event Record
	10.1.4 Activity Event Mapping Record
	10.1.5 Activity Log DTO
	10.1.6 Alert Metadata Generation
	10.1.7 Alert Message Template Maintenance
	10.1.8 Alert Maintenance

	10.2 Alert Subscription
	10.2.1 Transaction API Changes

	10.3 Alert Processing Steps
	10.4 Alert Dispatch Mechanism
	10.5 Adding New Alerts
	10.5.1 New Alert Example
	10.5.2 Testing New Alert

	10.6 Support For Derived Facts

	11 Creating New Reports Using Oracle Analytics Publisher
	11.1 Data Objects for the Report
	11.2 Catalog Folder
	11.3 Data Source
	11.4 Data Model
	11.5 XML View of Report
	11.6 Layout of the Report
	11.7 View Report in Oracle Analytics Publisher
	11.8 OBP Batch Report Configuration - Define the Batch Reports
	11.9 OBP Batch Report Configuration - Define the Batch Report Shell
	11.10 OBP Batch Report Configuration - Define the Batch Report Shell Dependencies
	11.11 OBP Batch Report Configuration
	11.11.1 Batch Report Generation for a Branch Group Code
	11.11.2 Batch Report Generation Status
	11.11.3 Batch Report Generation Path

	11.12 OBP Adhoc Report Configuration
	11.12.1 Define the Adhoc Reports
	11.12.2 Define the Adhoc Report Parameters
	11.12.3 Define the Adhoc Reports to be listed in Screen
	11.12.4 Adding Screen Tab for Report Module

	11.13 Adhoc Report Generation – Screen 7775
	11.14 Adhoc Report Viewing – Screen 7779

	12 Security Customizations
	12.1 OPSS Access Policies / Matrix Auth – Adding Attributes
	12.1.1 Steps
	12.1.1.1 Example of Matrix_auth conditional rule

	12.2 OAAM Fraud Assertions – Adding Attributes
	12.2.1 Steps

	12.3 Security Validators
	12.3.1 Customer Validators
	12.3.2 Account Validators
	12.3.3 Business Unit Validators

	12.4 Customizing User Search
	12.4.1 Steps

	12.5 Customizing One-Time-Password (OTP) Processing Logic
	12.5.1 Steps

	12.6 Customizing Role Evaluation
	12.6.1 Steps

	12.7 Customizing Limits Exclusions
	12.7.1 Steps

	12.8 Customizing Business Rules
	12.8.1 Steps to Update the Business Rules by Browser
	12.8.2 Steps to Update the Business Rules in JDeveloper

	13 Facts and Rules Configuration
	13.1 Facts
	13.1.1 Type of Facts
	13.1.2 Facts Vocabulary
	13.1.3 Generation of Facts using Eclipse Plug-in
	13.1.4 Object Facts

	13.2 Business Rules
	13.2.1 Rules Engine
	13.2.2 Rules Creation by Guided Rule Editor
	13.2.3 Rules Creation By Decision Table
	13.2.4 Rules Storage
	13.2.5 Rules Deployment
	13.2.6 Rules Versioning

	13.3 Rules Configuration in Modules
	13.3.1 Generic Rules Configuration

	13.4 Rules Migration
	13.4.1 Rules Configured for Modules

	14 Composite Application Service
	14.1 Composite Application Service Architecture
	14.2 Multiple APIs in Single Module

	15 ID Generation
	15.1 Database Setup
	15.1.1 Database Configuration

	15.2 Automated ID Generation
	15.3 Custom ID Generation

	16 Extensibility of Domain Objects using Flex Fields
	16.1 Flex Field - Provisioning
	16.1.1 How to know Maximum Flex Fields Provisioned for Entity?
	16.1.2 Increase Maximum Flex Fields Provisioned for Entity (Optional Step)

	16.2 Flex Field - Utilization
	16.2.1 Maintain Flex Field Metadata using Seed Data Configuration (Fast Path: OPA006) Page

	16.3 Runtime Storage and Retrieval of Flex Field Attribute values
	16.4 Flex Field - Fact support
	16.5 Flex Field – Validation Support
	16.6 Flex Field – Usage Instructions

	17 Extensibility of Domain Objects - Dictionary Pattern
	17.1 Customized Domain Object Attribute Placeholders
	17.2 Customized Domain Object DTO Interceptor in UI Layer
	17.2.1 Interceptor Hook to Persist Customized Domain Object Attributes
	17.2.2 Interceptor Hook to Fetch Customized Domain Object Attributes

	17.3 Dictionary Data Transfer from UI to Host
	17.3.1 Customized Domain Object DTO Transfer from UI to Host
	17.3.2 Customized Domain Object DTO transfer from Host to UI

	17.4 Translating Dictionary Data into Custom Domain Object
	17.4.1 Instantiation and Persistence of Custom Domain Objects
	17.4.2 Fetching of Customized Domain Objects
	17.4.3 Defining of Customized Domain Objects

	17.5 Customized Domain Object ORM Configuration
	17.5.1 Case 1 - Non-Inheritance based mapping
	17.5.2 Case 2 - Mapped as ORM Subclass
	17.5.3 Case 3 - Mapped as ORM Union-Subclass or Joined-Subclass
	17.5.4 Case 4 - Mapped as ORM Component

	17.6 Extensibility using Dictionary in Origination Application
	17.6.1 ICustomDataHandler's as DictionaryArray Interceptor
	17.6.2 Create Customized Abstract Domain Object Class
	17.6.3 Create Customized Abstract Domain Object ORM Mapping File
	17.6.4 Create Customized Abstract Domain Object Attribute Columns

	17.7 Extensibility using Attributes of Various Supported Datatypes
	17.8 Customized Domain Object having Collection of Objects as Attributes
	17.9 Limitation to Extensibility using Dictionary Pattern

	18 OCH Integration
	18.1 Integration Adapter Interface
	18.2 Abstract Integration Adapter Class
	18.3 Sample Integration Adapter
	18.4 Integration Abstract Assembler
	18.5 Sample Assembler

	19 Documaker Integration
	19.1 XSD
	19.2 JAXB Classes
	19.3 Extractors
	19.4 Seed Entries
	19.4.1 JAXB Package Entry
	19.4.2 Extractor Entry

